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Abstract: Two-wheeled self-balancing vehicles have been extensively used 
because of their unique capabilities such as reducing the traffic problems and 
being environment friendly. The main challenge in these vehicles is to design 
robust controllers capable of creating smooth and safe movement. This paper 
focuses on design of such a controller using the feedback linearisation 
technique. The modelled system comprises of a single-link inverted pendulum, 
which simulates the rider’s body, mounted atop a two-wheeled platform. While 
the base is being externally disturbed, the designed controllers guarantee the 
stability of the system and keep the rider along its equilibrium situation. In 
order to validate the effectiveness of proposed control schemes, some sets of 
simulation studies are carried out on different smooth and non-smooth surfaces. 
It is finally shown that besides having stability on smooth surfaces, the system 
behaves stably on non-smooth trajectories. 
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1 Introduction 

Two-wheeled mobile vehicle is a machine whose movement is based on two separately 
driven wheels placed on either side of the robot body (Maddahi et al., 2012a). Using 
differential drive mechanism, the vehicle is capable of changing its direction by varying 
the relative angular velocity of wheels, and therefore does not require an additional 
steering motion. During the vehicle motion, the centre of rotation may fall anywhere in 
the line joining the wheels together (Maddahi et al., 2012b). This uncertainty usually 
creates some inaccuracies, which is more challenging when the vehicle carries an inertial 
and massy body such as human. A solution, to reduce the occurred inaccuracy is to 
design a stable controller which is capable of keeping the vehicle and rider along desired 
situations. 

Control of self-balancing systems has been ever of concern amongst the engineers. 
Two-wheeled vehicles, as one of the self-balancing systems, have attracted more 
attentions of researchers in recent decade. The idea of controlling these systems arises 
from the control problems of inverted pendulum (IP) which were of concern by the 
middle of recent decade (Bradshaw and Shao, 1996; Eker and Astrom, 1996; Mills et al., 
2009). Saifizul et al. (2006) developed an intelligent controller for self-erecting IP  
via adaptive neuro-fuzzy interface system, and designed a position-velocity controller  
to swing up the pendulum considering physical behaviour. Sukontanakarn and 
Parnichkun (2009) proposed a real-time optimal control algorithm for keeping a rotary IP 
self-balancing and used a linear quadratic regulator (LQR) controller to balance the 
pendulum. Also, Zhong and Rock (2001) used a LQR to optimise the control gains 
utilised in the feedback controller. Moreover, Yamakita et al. (1992) proposed a variable 
structure system (VSS) adaptive control method for the IP of rotation type while assumed 
that the pendulum is simple rod for the stabilisation of the rotating arm. Slotine and Li 
(1991) developed an adaptive sliding mode controller satisfying the desirable properties 
of nonlinear systems with uncertainty, and proved the validity of the method which was 
used to the robot manipulator control. Furthermore, some studies have been done on  
self-balancing two-wheeled robots (SBTWR). To name a token, Yau et al. (2009) 
proposed a robust control method applied to a self-balancing SBTWR. They investigated 
both dynamic analysis and the control of this type of robot which is inherently unstable. It 
was followed by proposing an appropriate sliding surface to ensure the stability of the 
controlled close-loop system in sliding mode by Lyapunov stability theory. Also, Grasser 
et al. (2002) manufactured a small two-wheeled robot named JOE. This robot was 
difficult to control due to existence of friction force and light weight of corresponding 
mounted pendulum. One of the impressive studies, done in this area, is research 
performed by Lee and Jung (2009) on a mobile IP robot system. They proposed a sensor 
fusion technique of low cost sensors, i.e., gyro- and tilt sensory systems, to measure the 
balancing angle of the IP robot system using Kalman filter based on filtered sensor data. 

Apart from any research carried out on IPs and SBTWRs, an extensive attention has 
been paid toward the control problem of two-wheeled self-balancing vehicles. Since, the 
safety of the human riding on the SBTWRs is very significant and applied control 
systems must guarantee the stability and the safety of the system in different situations, 
the vehicle must be controlled more accurate than the mentioned systems. Although the 
linear control of such systems results in good practical responses, the domain of attraction 
is extremely small (Aracil et al., 2008). Therefore, the need of controlling the nonlinear 
model of these vehicles is one of the interests of scholars and engineers in this area. The 
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more accurate the control method is, the safer the vehicle will be. Madero et al. (2010) 
developed a nonlinear control law for two-wheeled self-balanced vehicles based on 
forwarding and proposed a Lyapunov function that allows obtaining an estimation  
of the domain of attraction for the resultant law. Furthermore, Tsai et al. (2010) used 
radial-basis-function neural networks (RBFNNs) for a two-wheeled scooter to achieve 
self-balancing and yaw control. 

Since the equilibrium point of two-wheeled vehicles is inherently unstable, therefore, 
the accurate control of such systems is very significant in order to guarantee the safety of 
the rider. There exist different techniques to be used for designing the stable controller 
for such systems. Amongst them, the feedback linearisation method is simpler to 
implement. On the other hand, sliding mode control (SMC) is a useful method for 
tracking problems in robotic systems, and the problem of stabilising two-wheeled 
vehicles is not a tracking problem. The authors’ experiences on the use of the SMC 
method, to stabilise two-wheeled vehicles, did not result in reasonable practical features 
due to the existence of sign function in high frequency control signal. In other words, FL 
method leads to better practical responses as compared to the SMC method. In the SMC 
method, the high oscillating chattering due to the discontinuity surface in terms of control 
signal can spoil the comfort of the rider while feedback linearisation method results in 
smoother response. Owing to the acceptable responses of this method, in many industrial 
applications, we intended to control this model of two-wheeled vehicles by feedback 
linearisation method. 

In the current work, the control of the nonlinear model of two-wheeled self-balancing 
vehicle, capable of carrying human, is studied using feedback linearisation technique. 
The main contribution of this research is to control the vehicle while moving on a 
combined smooth and non-smooth surface. A set of simulation studies is done in which 
the vehicle is commanded to move on various surfaces. It is shown that the proposed 
control law is robust against different excitations exerted by the surface on the vehicle. 

The rest of the paper is organised as follows. Section 2 presents the dynamic model of 
the vehicle. The control scheme is described in Section 3. The simulation results are 
shown in Section 4. The conclusion of the work is outlined in Section 5. 

2 Dynamic model of two-wheeled vehicles 

The considered dynamics model of the two-wheeled vehicle consists of two wheels, a 
differentially-driven system, a base and a 1-DOF link with a seat as the rider position 
shown in Figure 1. Note that the dynamic equations of the vehicle are obtained from two 
different views, as follows: 

• Case (a): Vehicle moves: The aim of this section is to control the position of the 
rider. The control law is developed for the torque of motor driving the link. 

• Case (b): Vehicle stops: In the second view, the vehicle is assumed to slow down 
until it fully stops. The application is in emergency situations like staying in traffic 
jam. Here, in addition to control the position of the rider, a control law should be 
developed for the torque of left wheel motor. Since the base of the two-wheeled 
vehicles is inherently unstable, thus, it must be maintained on its equilibrium point 
by exerting appropriate control signal as the torque on the relevant motor. 
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In Figure 1(a), β = θ + α, where θ is the angular displacement of the link with respect to 
the normal vector of base, and α represents the pitch angle which is the rotation of the 
base with respect to Z-axis [see Figure 1(b). 

Figure 1 (a) Coordinate frames of two-wheeled self-balancing vehicle (b) Defining the angles 
(see online version for colours) 

 
 (a) (b) 

2.1 Equations of motion in case (a) 

There are two state variables β and β  for case (a). Equation (1) describes the equation of 
motion of the vehicle which is obtained by implementing Lagrangian technique in  
two-dimensional movement. Obviously, only β is of concern as the generalised 
coordinate in Lagrange method. 

( )2 ( ) (1 ) cos( ) ( )sin( )
2 L
Rma I ma k φ ma y g T⎛ ⎞+ + + − − =⎜ ⎟

⎝ ⎠
β β β  (1) 

where m is the mass of the rider’s body (link). a and R represent the distance between the 
center of mass and the joint of link and the radius of right/left wheel, respectively. I 
denotes the link moment of inertia with respect to its center of mass. Moreover, T 
represents the torque of motor used to drive the link, and k represents the differential 
coefficient between right and left wheels. In addition, g is the gravitational acceleration, 
β  is referred to as the angular acceleration of link, and finally, y  symbolises the 
excitation which the surface exerts on the vehicle. In this representation, x is rephrased in 
terms of the angular displacement of left wheel, φL, as follows: 

( ) (1 )
2 2

L R
L

x x Rx k φ+
= = +  (2) 

In (2), xL = R.φL and xR = R.φR denote the linear displacement of left and right wheels, 
respectively. The angular displacement of left wheel, φL, is only considered in dynamic 
modelling, and φR (rotation of right wheel) is calculated by multiplying the φL to a 
constant coefficient, i.e., φR = kφL which utilises a differentially-driven mechanism. 
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The state space model of the vehicle dynamics is obtained based on equation (1). The 
following states are defined for case (a): 

1

2

x
x
=⎧

⎨ =⎩

β
β

 (3) 

Using equation (1), the following state space model is obtained: 

( )

1 2

2 1
1 ( )sinL

x x

x T Bφ ma y g x
A

=⎧
⎪
⎨

⎡ ⎤= − + −⎣ ⎦⎪⎩

 (4) 

where T denotes the control law which should be used to stabilise the system. A and B 

factors are defined as A = I + ma2 and 1(1 ) cos( ).
2
RB k m a x⎛ ⎞= + ⎜ ⎟

⎝ ⎠
 

2.2 Equations of motion in case (b) 

In case (b), the two-wheeled self-balancing vehicle reduces its speed and is compelled to 
stop in some situations such as traffic jam. The dynamic equations of this case are 
presented in equation (5). In equation (5), the angular displacement of link with respect to 
upright position (β), and the rotation of left wheel (φL) are considered as generalised 
variables in Lagrangian notation. 

( )

2

2
2 2 2

(1 )cos( )
2

(1 )cos( ) (1 ) (1 ) 1 (1 )
2 4

0 sin( ) sin( )
( ) ( ) ( )

0 0sin( )( )
2

b
w w δ

leL

RI ma ma k

R M Rma k I k k M k R k J
d

ma ma β T
θ y gR Tmaφ

⎡ ⎤+ +⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞ ⎛ ⎞+ + + + + + + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥+ + + + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

β

β

ββ
α

β β

 (5) 

In equation (5), Iw is the left wheel moment of inertia with respect to its centre of mass. 
Mb and Mw represent the masses of base and wheel, respectively. Since, the yaw angle δ 
is considered in the modelling, therefore, Jδ is entered into the dynamic equations as the 
moment of inertia of the base with respect to Y-axis. d is referred to as the wheelbase, 
and Tle denotes the control torque of motor installed to drive the left wheel. Note that the 
yaw angle δ is defined as a linear function of xL and xR as below: 

(1 )L R
L

x x Rδ k φ
d d
−

= = −  (6) 

It is easily understandable when k = 1, the yaw angle equals zero and it means that the 
vehicle does not deviate with respect to Y-axis. 

Moreover, the effect of the friction force has not been considered in equation (5).  
By taking this force into account, the term Tle in equation (5) is replaced by the term  
Tle – Fr.R, in which, Fr is the rolling resistance force imposed by the road on the wheels 
and is presented as equation (7). The following equation is a valid empirical model for 
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rolling resistance force used in many vehicle dynamic problems (Jazar, 2008). In 
equation (7), the effects of tire pressure (p), vehicle velocity (vx) and normal force (Fz) on 
the rolling resistance force are considered. 

5
25.5 10 90 1,100 0.03885.1 . .

1,000
Z Z

r x z
K F FF v F

p p
× + +⎡ ⎤

= + +⎢ ⎥
⎣ ⎦

 (7) 

The parameter K and p are set to 0.8 and 100 KPa for radial tires used in proposed  
two-wheeled vehicles. The normal force (Fz) is, also, calculated as follows: 

( )1 2
2z b wF M M m g= + +  (8) 

According to equation (5), the following state variables are considered for case (b): 

1 3

2 4

L

L

x x φ
x x φ
= =⎧

⎨ = =⎩

β
β

 (9) 

And, the state space model of the system is expressed as follows: 

1 2

2 2

3 4

4 2

( )

( )

le

le

x x
B Fx T Z T Q

B AF B
x x

A Bx T Z T Q
AF B A

=⎧
⎪

⎡ ⎤⎪ = − − −⎢ ⎥⎪ − ⎣ ⎦
⎨ =⎪
⎪ ⎡ ⎤= − − −⎪ ⎢ ⎥− ⎣ ⎦⎩

 (10) 

where the abbreviations used in equation (10) symbolise the following terms: 

( )
2

2 2 2

1 1

2
1 2

(1 ) (1 ) 1 (1 )
4

sin( ). sin( )

sin( ).
2

b
w w δ

M RF I k k M k R k J
d

Q ma x y mag x
RZ ma x x

⎧ ⎛ ⎞ ⎛ ⎞= + + + + + + −⎪ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎪⎪ = − +⎨
⎪
⎪ = −
⎪⎩

 

3 Derivation of control laws 

The control laws are obtained by applying feedback linearisation technique on the 
derived equation(s) of motion in each case. Firstly, the output variables are identified 
followed by designing the control torques based on this technique (Slotine and Li, 1991). 
This section is also categorised into two categories as follows. 

3.1 Design of control law for case (a) 

In case (a), the output variable of the system is β, where: 
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( )1
1 ( )sinLT Bφ ma y g x
A
⎡ ⎤= − + −⎣ ⎦β  (11a) 

Now, based on feedback linearisation method, the control parameter w is defined as 
follows: 

( )1
1 ( )sinLw T Bφ ma y g x
A
⎡ ⎤= = − + −⎣ ⎦β  (11b) 

By substituting equation (11b) in equation (4), we have: 

1 2

2

x x
x w
=⎧

⎨ =⎩
 (12) 

Equation (12) represents a linear form of state equations in terms of the control parameter 
w, and laws followed in classic control. Therefore, w is defined as a PD controller as 
follows: 

d d pw k e k e= + +β  (13) 

where kp and kd are the proportional and derivative coefficients of the PD controller. In 
the interim, dβ  denotes the desired angular acceleration of the link. e = βd – β, and 

.de = −β β  βd and dβ  represent the desired output variable and the desired first 
derivative of output variable, respectively. By these definitions, e and e  are physically 
referred to as the error signal and the derivative of error signal produced due to the 
differences between the actual and desired signals. 

By combining equations (11b) and (13), the control law is obtained as follows: 

( ) ( )1( )sind d p LT A k e k e Bφ ma y g x= + + + − −β  (14) 

The developed control law in equation (14) is the torque guarantees that the link 
(simulated as the rider) approaches its equilibrium point, and keeps the rider in upright 
position. 

3.2 Design of control law for case (b) 

Similar to the procedure implemented in case (a), to apply feedback linearisation 
technique on case (b), first, the output variables of the system must be obtained. With 
reference to equation (5), these output variables are β and φL; therefore, the control 
parameters w1 and w2 are defined as: 

1 2

2 2

( )

( )

le

L le

B Fw T Z T Q
B AF B

A Bw φ T Z T Q
AF B A

⎧ ⎡ ⎤= = − − −⎪ ⎢ ⎥⎪ − ⎣ ⎦
⎨

⎡ ⎤⎪ = = − − −⎢ ⎥⎪ − ⎣ ⎦⎩

β
 (15) 

Subsequently, equation (10) is re-arranged as follows: 
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1 2

2 1

3 4

4 2

x x
x w
x x
x w

=⎧
⎪ =⎪
⎨ =⎪
⎪ =⎩

 (16) 

As shown, a linear form of state equations is again constituted in terms of the control 
parameters w1 and w2. Now, these parameters are defined as PD controllers same as what 
described for case (a): 

1 ,1 1 ,1 1

2 , ,2 2 ,2 2

d d p

L d d p

w k e k e
w φ k e k e
⎧ = + +⎪
⎨

= + +⎪⎩

β
 (17) 

In equation (17), ,L dφ  is the desired angular acceleration of the left wheel. kd,1 and kp,1 
denote the derivative and proportional coefficients of control parameter w1 while kd,2 and 
kp,2 are the corresponding coefficients of w2. Meanwhile, we have: 

1

1

2 ,

2 ,

d

d

L d L

L d L

e
e
e φ φ
e φ φ

= −⎧
⎪ = −⎪
⎨ = −⎪
⎪ = −⎩

β β
β β

 (18) 

In this notation, φL,d and ,L dφ  represent the desired values for angular displacement and 
velocity of the left wheel, respectively. By substituting equation (17) into equation (15) 
and using Cramer method, the control torques are obtained as below: 

( ) ( )( )

( ) ( )( )

1
,1 1 ,1 1 1 , ,2 2 ,2 2 2

2

1
,1 1 ,1 1 1 , ,2 2 ,2 2 22

2

1

1 . .
.

d d p L d d p

le d d p L d d p

gT k e k e f φ k e k e f
μ g

A F gT k e k e f φ k e k e f
ξ B g

⎧ ⎡ ⎤= + + − − + + −⎪ ⎢ ⎥
⎣ ⎦⎪

⎨
⎡ ⎤⎪ = + + − − + + −⎢ ⎥⎪ ⎣ ⎦⎩

β

β
 (19) 

where A and B were defined in equation (4), and 

1 12 2

2 22 2

1 1 1
1 2

. . . .

B FQ Bf Z g
B AF B B AF

A BQ Af Z g
AF B A AF B
F g B g A F gμ ξ g

B A B

⎧ ⎛ ⎞= − + =⎜ ⎟⎪ − ⎝ ⎠ −⎪
⎪ ⎛ ⎞= − + =⎜ ⎟⎨ − ⎝ ⎠ −⎪
⎪

= − + = −⎪
⎩

 

4 Simulation results 

Simulation study was carried out in Matlab software using fourth order Runge-Kutta 
method as the integration routine in order to demonstrate the stability of the two-wheeled 
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self-balancing model by applying feedback linearisation technique. The required vehicle 
and human specifications, used in simulations, are given in Table 1. 
Table 1 System parameters used in simulation studies 

Parameter Symbol Value 

Moment of inertia of link with respect to its C.G. I 3.1 kg.m2 
Mass of link m 100 kg 
Distance between the link C.G. and joint a 0.6 m 
Radius of the each wheel R 0.15 m 
Gearbox ratio between left wheel and right one k 1 
Gravitational acceleration g 9.81 m/s2 
Mass of vehicle base Mb 100 kg 
Mass of each wheel Mw 12 kg 
Moment of inertia of the wheel with respect to its C.G IW 0.225 kg.m2 
Moment of inertia of the vehicle base with respect to Y-axis Jch 0.6 kg.m2 
Wheelbase d 0.6 m 
The angular acceleration of the left wheel which is effective in 
the dynamic of the vehicle in case (a) 

Lφ  sin(t) 

According to equation (1), the angular acceleration of the wheel ( )Lφ  affects the link 
position. In order to evaluate how robust the controller is against the different dynamic 
conditions, the parameter Lφ  was considered equal to sin(t) in simulation of case (a). By 
this assumption, it was tried to consider a difficult condition for the dynamic of the 
vehicle. To show the applicability of the proposed control laws, the vehicle was moved 
on five different surfaces including smooth, pulse, ramp, unseen and sinusoid. Several 
trial and errors were done in order to tune the controller gains in each case. The final 
values of proportional and derivative coefficients are given in Table 2. The initial 
conditions were considered as below for each case: 

(0) 0.1
case (a):

(0) 0
θ
θ

=⎧
⎨ =⎩

 (20) 

(0) 0.1
(0) 0

case (b):
(0) 0.1
(0) 0.02

L

L

θ
θ
φ
φ

=⎧
⎪ =⎪
⎨ =⎪
⎪ =⎩

 (21) 

Table 2 Proportional and derivative control gains 

Case (a) kp 28 
 kd 2 
Case (b) kp,1 25 
 kd,1 3 
 kp,2 15 
 kd,2 2 
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4.1 Simulation results for case (a) 

The results from the simulation of the vehicle movement on different surfaces were very 
similar to each other; therefore, the results of the simulation on unseen surface were just 
shown in order to avoid repetition. In this case, the parameter y  was chosen as a random 
function, i.e., it is assumed that the vertical acceleration ( ),y  exerted on the vehicle due 
to surface irregularities, has random values during the simulation. Figure 2 depicts the 
random function showing the variations of angular displacement and velocity of link with 
respect to time are shown in Figure 3. As observed, both states reach the corresponding 
equilibrium point. This test confirms the theoretical analysis performed earlier. The 
control signal (torque of link) is shown in Figure 4. Looking at the output torque, as 
written in equation (14), it is confirmed that the control signal is smooth which is 
desirable. 

Figure 2 Random function considered for parameter y  

 

0 2 4 6 8 10 12 14 16 18 20
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time [sec]

V
er

tic
al

 A
cc

el
er

at
io

n 
[m

/s2 ]

 

Figure 3 Variations of (a) angular displacement and (b) angular velocity of link with respect to 
time, case (a) 

 

0 2 4 6 8 10 12 14 16 18 20-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Time [sec]

A
ng

ul
ar

 d
is

pl
ac

em
en

t o
f l

in
k 

[r
ad

]

 
(a) 

 



   

 

   

   
 

   

   

 

   

   48 A. Maddahi and A.H. Shamekhi    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 3 Variations of (a) angular displacement and (b) angular velocity of link with respect to 
time, case (a) (continued) 
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Figure 4 Control torque pertaining to the link, case (a) 
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Figure 5 Effect of variations of left wheel angular acceleration on the link control torque 
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Figure 4 shows that the behaviour of torque is sinusoid-like function after 5 sec which is 
due to choosing Lφ  equal to sin(t). To show the effect of the angular acceleration of the 
on torque of link, the second set of simulations was carried out for case (a) in which the 
value of Lφ  was set to zero. The results showed that the torque of link approaches zero 
after around 50 sec. Figure 5 illustrates the effect of changing the Lφ  on the control 
torque of link, T. 

In third set of simulation studies, the effect of the mass of rider on the control torque, 
T, was investigated. The simulation study was carried out on the model considering 
various values for m. Figure 6 illustrates how the behaviour of control torque can change 
by varying the mass of link varies from m = 70 kg to m = 110 kg. With reference to 
Figure 6, the more the link mass is, the more overshoot of control torque will be. Note 
that, in this investigation, the angular acceleration of the left wheel, ,Lφ  was set to sin(t). 

Figure 6 Link control torque under variations of the link mass 
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4.2 Simulation results for case (b) 

In the fourth set of simulations, it is assumed that the two-wheeled self-balancing vehicle 
slows down and then stops on a path whose surface imitates a random function. Figure 7 
shows how the angular displacement and angular velocity of link varies with respect to 
time. The results of Figure 7 indicate that both states pertaining to link approach zero by 
applying the control signal T proposed in equation (19). The variations of angular 
displacement and velocity of left wheel are depicted in Figure 8. As observed both φL and 
its derivative with respect to time approach the equilibrium point (zero values) belonging 
to the base of the two-wheeled vehicle. This means that by exerting torque (Tle) presented 
in equation (19), the stability of the vehicle base is maintained while the vehicle slows 
down and finally stops. 

As mentioned earlier, while the vehicle slows down, control signals, defined in 
equation (19), the stability of the combination of rider and vehicle is guaranteed. As 
illustrated in Figure 9, considering the initial conditions mentioned in equation (21), 
values of 50 N.m and 13 N.m (for T and Tle respectively) must be applied on motors in 
order to keep the link and the base along corresponding equilibrium points. 
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Figure 7 Variations of (a) angular displacement and (b) angular velocity of link, case (b) 
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Figure 8 Variations of (a) angular displacement and (b) angular velocity of the left wheel,  
case (b) 
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Figure 8 Variations of (a) angular displacement and (b) angular velocity of the left wheel,  
case (b) (continued) 
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(b) 

Figure 9 Control signal pertaining to (a) link and (b) left wheel, case (b) 

 

0 2 4 6 8 10 12 14 16 18 20-60

-40

-20

0

20

40

Time [sec]

C
on

tro
l s

ig
na

l e
xe

rte
d 

on
 li

nk
 [N

.m
]

 
(a) 

 

0 2 4 6 8 10 12 14 16 18 20-15

-10

-5

0

5

10

Time [sec]

C
on

tro
l s

ig
na

l e
xe

rte
d 

on
 le

ft 
w

he
el

 [N
.m

]

 
(b) 



   

 

   

   
 

   

   

 

   

   52 A. Maddahi and A.H. Shamekhi    
 

    
 
 

   

   
 

   

   

 

   

       
 

Finally, the effect of friction on the control of the case (b) is investigated. With  
reference to equations (5) and (7), by imposing the friction force on the right hand side of 
equation (5), the behaviour of control torques varies with respect to condition in which 
the effect of friction is ignored. As observed in Figures 10 and 11, values of link control 
torque Tle increases up to 2 N.m in steady state by considering the effect of rolling 
resistance force on wheels while the vehicle tends to stop. Figure 11 illustrates the effect 
of friction, defined between wheel and road, on the control torque of the left wheel. 

Figure 10 Effect of the friction between the wheel and road on the control torque of the link 
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Figure 11 Effect of the friction between wheel and road on the control torque of the left wheel 
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5 Conclusions 

The purpose of this paper was to design a stable control scheme for two-wheeled  
self-balancing vehicles. The focus was on systems consisting of a two-wheeled 
differentially-driven mobile vehicle, and a 1-DOF link, behaving representing the rider’s 
body, which is mounted atop of the base. Firstly, the dynamic equations of the vehicle 
were derived from two different viewpoints: when the vehicle was in movement, and 
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vehicle slowed down until it stopped. The appropriate controllers were designed using 
feedback linearisation technique. Afterward, the proposed controllers were validated by 
carrying out five sets of simulation studies on smooth and non-smooth surfaces. It was 
demonstrated that the simulated vehicle was stable, and the states converged to 
corresponding equilibrium values. Moreover, the simulation results show that the system 
is robust to rider’s mass and existence of friction. Future work can focus on designing the 
stable controllers for this application, and validating the design process by performing the 
simulations using other stability techniques such as Lyapunov. 
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