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� EMVM method for control-oriented
modeling of diesel engine emissions
is introduced.
� The block oriented modeling

approach has been used for modeling
the engine.
� The whole engine is assumed to be

composed of distinct dynamic and
static modules.
� The ANN is applied into MVM for

prediction of emissions and
performance.
� The developed model is validated

using step and frequency response
tests.
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a b s t r a c t

Utilizing model-based controller design in automotive and powertrain industry is recently attracting
more attention due to its benefits in reducing controller development time and cost. Recent automotive
emission legislations put more limits on engine emissions in transients. Hence, the models, which are
capable of predicting engine performance and emissions in transient, are of the utmost importance. On
the other hand, the model-based controller design requires accurate meanwhile fast to run models to
be employed in both controller development and subsequent hardware in loop processes. In this paper,
a new quasi-static control oriented diesel engine modeling approach is investigated based on the block
oriented modeling method to predict the engine behavior in sense of both performance and emissions
in transient and steady state operation. The accuracy and speed of model execution are two important
attributes of models, which are in mutuality. In the proposed modeling a tradeoff between these two fac-
tors are made and some solutions are employed to increase both model accuracy and speed. The diesel
engines are nonlinear dynamic systems. In the proposed modeling approach, this behavior is assumed
to be composed of a semi-static combustion process surrounded by peripheral dynamic processes. This
static in cylinder process model is responsible for the performance and emissions of the engine.
Thermodynamic modeling coupled with chemical reaction model altogether with 1D gas dynamic model
is employed to predict the performance and emission of in-cylinder process based on some boundary
conditions which are derived from peripheral systems. Usually an iterative time consuming method is
employed to solve the thermodynamic models. In order to decrease the run-time of model, a neural
te event
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network is trained to mimic the thermodynamic model. On the other hand ordinary time differential
equations are used to model the peripheral dynamic systems such as induction and exhaust systems.
In order to validate the model for both steady and transient regimes, real step responses as well as experi-
mental frequency response are compared with model results. The comparison of experimental data with
model results shows tight agreement in both performance and emission prediction capabilities.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction model) which are combination of the two mentioned approaches.
Diesel engines are attracting more attention due to their inher-
ent high efficiency and the potential to reduce their emissions.
Nevertheless, the automotive manufacturers always face with stric-
ter emission obligations, which force them to decrease the emission
level of their products. On the other hand the customers require for
more fuel economy. The performance, emissions and noise level of
diesel engines strongly depend on the combustion phenomena,
which can be effectively controlled by precise fuel injection and
tuning the inducted air path parameters. Advent of the microcon-
trollers altogether with development of advanced control theories,
paved the way of achieving clean and calm diesel engines.

Anyway, design and calibration of new control schemes is com-
plex and time consuming and usually requires large amount of
expensive tests. These all lead to advent of model-based control
design procedure. The model-based control system development
can significantly decrease the cost and time of control systems
development, which is favorable to automotive manufacturers
[1,2]. In model-based controller design procedure, precise mean-
while computationally efficient models are needed to simulate
the engine behavior in transient modes. The developed model will
not only be employed as a plant in controller design procedure, but
also is used in Hardware in Loop (HiL), Software in Loop (SiL), fault
diagnosis, hybrid electrical power train design, automatic trans-
mission control, model-based calibration and engine-vehicle
coincidence procedure. In the recent vehicle emission obligations,
the role of transient engine operation has been highlighted, which
in turn increased the need to a control-oriented model with emis-
sion prediction capabilities in transient operation. Due to the cost
of emission sensors, they are not used in diesel engine control sys-
tems, such models can be employed in development of emission
observers and estimators. Usually mean value models (MVM) are
used for controller design aims. These models are usually ineffi-
cient to predict the engine emission in transient regime. On the
other hand, the models, which are able to predict the emissions,
are computationally complex and consequently not suitable for
control purposes.

As complicated systems with a variety of sub systems, diesel
engines are being considered from different points of view, each
of them results into a class of modeling. Diesel engines behavior
can be assumed to be originated from an air induction/exhaust
gas dynamics system and a relatively fast combustion process.
The dynamic behavior of engines is mainly due to gas flow systems
while combustion process is directly responsible for emission and
performance of engine. Due to this fact, two main modeling
approaches are emerged in literatures: combustion modeling,
which takes into account the thermodynamic aspects of combus-
tion phenomena, and the dynamic modeling that considers the
behavior of induction and exhaust systems. Thermodynamic mod-
els are mainly employed for prediction of emissions and perfor-
mance of engines. Static combustion models can be categorized
into three distinct categories: phenomenological approach which
includes the governing physical models [3–5], empirical approach
(black-box model) which includes the input–output data with an
identification method [6,7] and a hybrid modeling (gray-box
On the other hand, dynamic models of engines are usually
employed for control purposes [8]. The dynamic models can also
be categorized to phenomenological based models which use gov-
erning physical equations to describe the systems dynamics [9] and
empirical models which are developed based on identification of
engine input–output time series data. The latter contains both clas-
sical approach like Nonlinear Auto-Regressive Moving Average
with exogenous inputs (NARMAX) [10] and subspace method,
[11] as well as modern soft computing approaches such as fuzzy
[12], Adaptive Network Fuzzy Inference System (ANFIS) [13],
Local Linear Model Tree (LOLIMOT) [14] and dynamic ANN [15].
Experimental data in time series format is employed to identify
the models, which in turn increase dependency to costly and time
consuming tests. The phenomenological dynamic models however
consider the inlet and exhaust systems and the other modules,
which cause the dynamic behavior of engine. MVM is the state of
art modeling approach for engine dynamic behavior modeling
[16]. It neglects the discrete cycles of engine and assumes all pro-
cesses and effects that are spread out over the engine cycle. The
combustion data is usually being taken into account by look-up
tables or interpolated algebraic equation [9]. However, some efforts
have been done to implement the crank angle based models
directly into real time MVM models to predict the engine perfor-
mance [17,18]. The tabulated method is rapid enough to be used
for high-level controller development purpose but they have rarely
been considered for modeling the emissions. Nevertheless, some
efforts to implement emissions models as tabulated look-up tables
or algebraic polynomial expression (based on engine speed and
load) into MVM models can be found in literature [19,20,16,21].
Application of test bench steady state data into MVM leads to inef-
ficient models, which cannot predict the emissions with desired
accuracy in transient modes; usually correction factors are used
to compensate for transient prediction errors [19,22]. The correc-
tion factors takes into account the dynamic effects of diesel engines
such as turbo lag and gas dynamic delays. In addition, the
thermodynamic modeling coupled with chemical reaction models
has been implemented in MVM models. Unfortunately, this type
of modeling is computationally inconsistent with real time applica-
tions and makes the model too slow to run for control purposes [4].

Anyway, development of modern diesel engine control systems
requires the transient models which take into account the tran-
sient emission prediction and engine performance indices with
low computational burden and required accuracy. As described
earlier, the capabilities of emission prediction have been imple-
mented in existing models in two way: directly embedding a
thermodynamic-chemical reaction model into MVM model and
using a RPM-Load tabulated emission map with compensating
correction factors. The former leads to accurate but slow-to-run
models, which are not suitable for control development and real-
time requirement and the later is computationally favorable but
lacks the required accuracy for model-based controller develop-
ment and calibration aims.

In this paper, a new approach for control-oriented modeling of
diesel engines is proposed with inspiration of Block Oriented
Models (BOM), which can predict engine emissions in transients



Nomenclature

Ar opening area of EGR valve
C isentropic nozzle flow
cp specific heat in constant pressure
D diameter of compressor blade
Ien engine rotational inertia
Itc TC blades and interconnecting shaft rotational inertia
M mach number
_mas engine aspirated mass flow rate

ma,e mass of air in exhaust manifold
_mc compressor mass flow rate
_mc;cor corrected compressor mass flow rate

me accumulated whole accumulated mass of gas in exhaust
manifold

_mex;a mass flow rate of fresh air to exhaust manifold
_megr the mass flow rate of EGR gas

mf the mass of injected fuel per cylinder in each cycle
mi accumulated whole accumulated mass of gas in inlet

manifold
_mt turbine mass flow rate
_mth throttle valve mass flow rate

mx,i mass of burned gas in inlet manifold
Pa ambient pressure
Pe exhaust manifold pressure
Pi inlet manifold air pressure
Pp the pressure of air in compressor–throttle valve con-

necting pipe
pr,egr pressure ratio across the EGR valve
pr,t pressure ratio across the turbine
pr,th pressure ratio across the throttle valve
PWc compressor consumed power
PWt turbine generated power
Ta ambient temperature
Tc temperature of air after compressor

Tcool coolant fluid temperature
Te exhaust manifold temperature
Tegr temperature of EGR gas after intercooler
Tex temperature of engine exhaust gas
Ti inlet manifold air temperature
Tic temperature of air after main intercooler
Tp temperature of air in compressor–throttle valve con-

necting pipe
U blade tip speed
V flow velocity
Ve exhaust manifold volume
Vi inlet manifold volume
Xe the ratio of burned gas to whole accumulated mass in

exhaust manifold
xegr EGR valve opening signal
Xi the ratio of burned gas to whole accumulated mass in

inlet manifold
xth throttle valve opening percentage
xvgt the VGT opening signal

Greek letters
gc compressor thermodynamic efficiency
gic,c compressor heat exchanger efficiency
gic,egr EGR heat exchanger efficiency
gt turbine thermodynamic efficiency
xeng engine rotational speed
xtc,cor corrected turbocharger speed
w isentropic work coefficient (TC modeling)
c specific heat ratio
hth throttle valve angle
/ flow coefficient (TC modeling)
sb generated engine net torque
sl external load torque
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with very low computational burden and required accuracy. BOM
assumes that a nonlinear process is mainly composed of a linear
dynamic systems followed by a nonlinear static system [23]. The
whole engine system is divided to some subsystems; one of which
is in-cylinder (combustion) system. The combustion process as the
main source of engine emission and performance has been mod-
eled using a detailed thermodynamic model coupled with involved
chemical reaction. Since this kind of modeling is computationally
inefficient, an artificial neural network (ANN) is employed to
mimic the thermodynamic model results. A special care is dedi-
cated to selecting the input and outputs so that no need to correct-
ing factors exists. The whole model shows good properties in both
run-time and accuracy aspects.

This paper begins with a brief description of test bench acces-
sories. After which a brief description and supports for the proposed
engine modeling approach is mentioned. The model architecture is
described then and respective sub-models are developed in respec-
tive sections. Finally, the results are compared with experimental
data to show the effectiveness of proposed modeling approach.
2. Experimental setup

In order to develop the model and identification of the unknown
parameters and also validation of developed model a test setup has
been developed. An AVL Dynoperform160 dynamometer is
employed for applying the desired load both in steady state and
transient mode. AVL PUMA open test and control system is
employed as the main control system, it is also used for synchro-
nization of other measuring devices and saving the test data. An
air control unit is used for providing the engine with standard air.
In order to measure the fuel flow, AVL Fuelexact system is used
which offers no more than 0.1% error. Two distinct emission mea-
suring units are used for measuring NOx and soot in transient mode.
Horiba MEXA7100DEGR is employed for measuring generated NOX
with 1% measurement error, while AVL Micro Soot Sensor is used for
measuring generated soot. Also the MEXA7100DEGR is able to mea-
sure exhaust gas AFR and EGR rate. In order to validate the
thermodynamic model, an in-cylinder pressure signal has been
compared with model results. Pressure sensor GH13G is used for
measuring the in-cylinder pressure while AVL Indismart module is
employed for signal conditioning. The engine coolant control sys-
tem is also used. An optical AVL TS350 sensor is used to measure
the turbocharger speed. The pressure and temperature of required
points are measured using appropriate sensors. The schematics of
test setup are depicted in Fig. 1.
3. Engine modeling

In order to design the advanced electronic controllers for diesel
engines, accurate models are needed which are able to model both
performance and emissions. In this part, the concept of Extended
MVM (EMVM) is described and will be employed to model the
performance and raw emissions of a 1.5L Common Rail (CR) tur-
bocharged diesel engine. The proposed method takes into account
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Fig. 1. The schematics of test setup.
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the detailed thermodynamic aspects of engine while avoids high
computational burden by utilizing Artificial Neural Networks
(ANN). For detailed modeling, different parts of engine are modeled
using phenomenological methods. The components of engine are
depicted in Fig. 2; also different parts are numbered for modeling
purposes. The engine comprises inlet/exhaust systems which are
coupled together by a Variable Geometry Turbine (VGT) and
Exhaust Gas Recirculation (EGR) path. Two intercoolers are
employed for cooling the compressed air and EGR gas. The inlet
air path possesses a throttle valve which is used when fast air
pressure decrease is needed i.e. difference in manifolds pressures
are not sufficient to drive desired exhaust gas flow into inlet
manifold.

3.1. Modeling aims

By developing the microcontroller based diesel engine con-
troller, more potential to decrease the engine emission are emerged.
Design and calibration of diesel engine controllers which consider
emission legislatives, requires models that are able to model both
performance and emissions with desired level of accuracy.
Fig. 2. The components of proposed
Developing the diesel engine control oriented models with ability
of raw emissions prediction has received little attention [16]. In this
paper, a new modeling method is developed based on existing MVM
method with raw emission prediction capabilities. The model
should be fast enough to be used in controller design procedure as
well as HiL real time applications. Using new technologies in diesel
engines increase the number of actuators which in turn increase the
number of inputs to model. The model should be able to model
the influence of different inputs on engine outputs (performance,
emission and EMS sensor signals) in a time depended manner.

3.2. Modeling assumptions

Turbocharged diesel engines are complex nonlinear dynamic
systems which are composed of coupled dynamic subsystems.
BOM is a method to model the nonlinear dynamic systems. In this
method, the whole system is assumed to be composed of a mem-
ory-less nonlinear system in series with a linear dynamic system
[23]. In BOM the nonlinear behavior of system is completely
assigned to a static system the dynamic behavior of the system is
described by linear dynamic systems. This method of system
turbocharged diesel engine [2].
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behavior description inspired us to describe the engine behavior by
dividing it to a static part and a dynamic part. The heart of diesel
engine is a thermodynamic process which occurs in a closed cycle
in one or two revolution of engine crank shaft. This fast process
determines the engine emission and performance. In the MVM,
the average of variables in 5–10 respective cycles is considered
instead the cyclic or angle-based value of variables. These variables
are memory-less nonlinear function of cylinder boundary condi-
tions such as inlet air properties, fuel injection pattern and other
engine operational parameters. Due to relatively fast cyclic process,
the in-cylinder process (include combustion) can be assumed to be a
semi-static process in comparison to other processes occur in diesel
engines which are mainly responsible for providing air and fuel for
cylinder. In the other words, combustion can be assumed a nonlin-
ear memory-less procedure while its inputs are obtained by
dynamic systems as depicted in Fig. 3. Fuel Delivery System (FDS)
is a fast dynamic system when compared to other dynamic modules
in system. Usually feedback controllers are used to control rail pres-
sure in such manner that can vary rail pressure from 230 bar up to
1600 bar within a tolerance of 1% and steep gradients (e.g. up to
3000 bar/s) [24]. The fast dynamics of controlled systems let us
ignore the dynamics of FDS in comparison to the other engine
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Fig. 3. The semi-static and dynamic engine sub-systems (Exogenous inputs not
shown) [2].

Fig. 4. The engine mo
modules, so the dynamic FDS is modeled as a semi-static system
in this paper.

The following assumptions are taken into account for modeling
the sub-systems. Air induction and exhaust gas systems are two
major dynamic systems to be modeled. Both fresh air and exhaust
gases are assumed to be ideal gases. The lumped model is used for
modeling the plenum air dynamics and the wave properties of air
flow are neglected. The wall heat transfer and flow friction in pipes
are neglected while port heat transfer is considered. Willans line is
employed for modeling the mechanical friction based on test data.

3.3. Model architecture

The architecture of model is developed based on three main mod-
ules: Intake and Exhaust System (IES), In-Cylinder Process (ICP) and
Engine Inertial System (EIS). The fuel delivery system is neglected
and the rail pressure signal and fuel injection pattern are considered
as exogenous inputs. As discussed earlier, IES and EIS modules are
responsible for dynamic behavior of engine while the memory less
ICP module is responsible for complex behavior of engine. The
indexing sequence of pressure and temperature as well as gas flow
rates is illustrated in Fig. 4. where T, P and X stands for absolute tem-
perature, pressure and burnt gas fraction, respectively.

3.4. Intake and exhaust systems

IES comprises all the systems which participate in directing the
air and emission flows. Three distinct paths are used to control the
air and emission flow and their quality. In the proposed engine a
VGT Turbocharger (TC) beside throttle valve is employed to control
air pressure, in addition, an EGR valve is used to provide inlet air
with desired EGR rate with the aim of decreasing NOx generation.

3.4.1. Turbocharger
The proposed engine employs a VGT type TC which its

performance can be altered with variation of turbine blades angle.
The TC comprises turbine, compressor and a common shaft
which transfers the turbine generated power to compressor.
Consequently, both compressor and turbine should be modeled
using appropriate equations. The required power to increase the
ideal gas pressure can be estimated using the following equation:

PWc ¼ _mccpTa
1
gc

Pp

Pa

� �c�1
c

� 1

" #
ð1Þ
del architecture.



Table 1
Extrapolating non-dimensional functions.

Standard Form Non-Dimensional Form

pr ¼ f 1ðxtc ; _mc;corÞ / = g1(w, M)
gc ¼ f 2ðxtc ; _mc;corÞ gc = g2(/, M)
_mt;cor ¼ f 3ðpr;VGTÞ _mt;cor ¼ g3ðpr;VGTÞ
gt ¼ f 4ðxtc ;VGTÞ gt ¼ g4ðbsr;VGTÞ
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In which cp is the gas specific heat in constant pressure, c is speci-
fic heat ratio and gc is the compressor efficiency. Compressing the
inducted air will increase the gas temperature, which is modeled
as follows:

Tc ¼ Ta 1þ 1
gc

Pp

Pa

� �c�1
c

� 1

" #( )
ð2Þ

Turbines use the gas enthalpy to generate required mechanical
power; therefore, a decrease in the gas temperature occurs. The gas
temperature after turbocharger can be modeled using the follow-
ing equation:

Tt ¼ Te 1� gt 1� Pt

Pe

� �c�1
c

" #( )
ð3Þ

where gt is the turbine efficiency. In addition, the power generated
by turbine can be calculated as follows:

PWt ¼ _mtcpTegt 1� Pt

Pe

� �c�1
c

" #
ð4Þ

Usually static maps are used to describe the compressor and
turbine efficiencies and other performance parameters. The stan-
dard compressor maps report compressor efficiency and pressure
ratio as a function of compressor rotational speed and mass flow
rate. On the other hand, turbine standard maps demonstrate tur-
bine mass flow rate and efficiency as a function of pressure ratio,
turbine speed and VGT position.

The static maps developed for describing compressors opera-
tion usually report compressor efficiency in medium to high speed
of compressor operation; as a result extrapolation methods are
usually used for lower speeds. Standard methods of extrapolation
usually fail to predict compressor efficiency in low TC speeds
[25,26]. The same problem exists for turbine. Dinescu and
Tazerout used dimensional analysis to overcome this problem
[25]. They defined flow coefficient (/), circumferential Mach num-
ber (M) and isentropic work coefficient (w) as non-dimensional
numbers to extrapolate compressor maps. / is defined as the ratio
of flow velocity V to blade tip speed U.

/ ¼ V
U
¼

_mc;cor

qpðD=2Þ2

xtc;corðD=2Þ ð5Þ

where _mc;cor is the corrected compressor mass flow rate, q is the air
density in the up-stream of compressor, xtc,cor is the corrected com-
pressor speed and D is the diameter of compressor blade. On the
other hand, circumferential M and w are defined as follows:

M ¼
_mc;cor

qpðD=2Þ2ffiffiffiffiffiffiffiffiffiffiffi
cRTa

p ð6Þ

w ¼
cpTa pr

c�1
c � 1

� �
½xtc;corðD=2Þ�2

2

ð7Þ

In addition, they introduce Blade Speed Ratio (BSR) as the non-
dimensional factor, which can be used in extrapolation of turbine
maps. The BSR is defined as the ratio of blade tip speed U to
isentropic nozzle flow C:

bsr ¼ U
C
¼ xtc;corðD=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2cpTa 1� p
c�1
c

r;t

� �s ð8Þ

where D is the turbine blade diameter and pr,t is the pressure ratio
across the turbine. Using these non-dimensional factors, the behav-
ior of turbocharger can be modeled in whole operational range.
Using the mentioned non-dimensional parameters, the functions
with extrapolating capability are developed which are seen in
Table 1.

The standard functions data can be converted to non-
dimensional compatible form. The generated non-dimensional
data can be formulated by multi-dimensional surface fitting
techniques.

TC shaft is the interconnecting component, which transfers the
turbine-generated power to compressor. The differences of power
accelerate/decelerate the TC shaft according to Euler equation as
follows:

_xtc ¼
PWt � PWc

xtcItc
ð9Þ

where Itc is the TC blades and interconnecting shaft rotational
inertia.

3.4.2. Manifold processes
An influential phenomenon on engine dynamics is the manifold

processes. The manifolds are modeled using a combination of
continuity and energy equations. Lumped transient modeling is
used to simulate pressure and temperature variations in the
manifolds. The effect of wall heat losses and wave propagation in
manifolds are neglected and the accumulated gas is assumed to
be ideal gas. The pressure in input manifold is calculated by
following equations:

_Pi ¼
cR
Vi
ðTp _mth þ Tegr _megr � Ti _masÞ ð10Þ

In which c is the air specific heat ratio, R is the gas constant, Vi is
the inlet manifold volume and _mas is the engine aspirated mass
flow rate which is derived from ICP model. The other parameters
and related indices are shown in Fig. 4. Usually interpolated mod-
els are used for modeling the volumetric efficiency based on which
aspirated mass flow rate is calculated. In this paper, the cyclic sim-
ulation is used to calculate the aspirated mass flow rate based on
different boundary conditions on cylinder. Also, the exhaust mani-
fold pressure is derived using the following differential equation:

_Pe ¼
cR
Ve
ðTex _mas � Teð _megr þ _mtÞÞ ð11Þ

where Ve is the exhaust manifold volume and Tex is the exhaust gas
temperature which will be calculated from ICP model. The connect-
ing pipe between intercooler and throttle valve also operates as an
accumulating volume. Its pressure can be found from the following
equation:

_Pp ¼
cR
Vp
ðTic _mc � Tp _mthÞ ð12Þ

In which, Vp is the volume of pipe and connections between
compressor and throttle valve. The accumulated mass in manifolds
and pipes can be calculated using continuity equation as follows:

d
dt

mi ¼ _mth þ _megr � _mas ð13Þ

d
dt

me ¼ _mas þ _megr � _mt ð14Þ
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d
dt

mp ¼ _mc � _mth ð15Þ

Having the pressure and accumulated mass in each manifold,
the temperature can be found using ideal gas state equation as
follows:

Ti ¼
Vi

Rmi
Pi ð16Þ

Te ¼
Ve

Rme
Pe ð17Þ

Tp ¼
Vp

Rmp
Pp ð18Þ
3.4.3. Throttle valve modeling
The diesel engines’ generated torque is controlled directly by

injected fuel mass, so in contrary to gasoline engine no throttle
valve is used to control the generated power. Where low level of
mechanical power is needed, the AFR increases, which in turn
increases the generated NOx significantly. That is why modern
diesel engines are equipped with throttle valve. Usually orifice
air mass flow rate equation is used to model the mass flow across
the throttle valve. In this paper, the model developed by Hendricks
et al. is employed [27]. Hendricks suggested that air mass flow rate
across the throttle can be modeled using two parallel orifices as
follows:

_mth ¼
Ppffiffiffiffiffiffiffiffi
RTp

p b1ðhthÞ � b2ðpr;thÞ ð19Þ

In which pr,th is the pressure ratio across the throttle valve and
hth is throttle valve opening angle. b1 function is defined as follows:

b1ðhÞ ¼ b0 þ b1 cosðhthÞ þ b2 cos2ðhthÞ ð20Þ

b0, b1 and b2 are found from experimental tests. Also b2 is defined as:

b2ðhÞ ¼
1

0:74

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0:4404

r;th � p2:3086
r;th

q
; pr;th P 0:4125

1; pr;th < 0:4125

8<
: ð21Þ
3.4.4. Intercooler modeling
The temperature of air downstream compressor intercooler is

modeled using the heat exchanger efficiency as follows:

Tic ¼ gic;cTcool þ ð1� gic;cÞTc ð22Þ

where gic,c is the compressor heat exchanger efficiency and is
derived using experimental tests and Tcool is the coolant fluid
temperature. In addition, the temperature of cooled recycled gas
is calculated as follows:

Tegr ¼ gic;egrTcool þ ð1� gic;egrÞTe ð23Þ

In which, gic,egr is the EGR heat exchanger efficiency.

3.4.5. EGR modeling
EGR modeling is comprised of calculating the exhaust gas flow

through the EGR valve and calculation of EGR rate in inlet mani-
fold. Standard orifice flow model is used to calculate the EGR flow
through the valve as follows:

_megr ¼
ArðxegrÞPeffiffiffiffiffiffiffiffiffiffiffi

RTegr
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c

c� 1
p2=c

r;egr � pðcþ1Þ=c
r;egr

� �s
ð24Þ

In which xegr is the normalized valve opening signal, Ar is the
opening area of EGR valve and pr,egr is the pressure ratio across
the valve and is calculated based on following equation:
pr;egr ¼ max
Pi

Pe
;

2
cþ 1

� � c
c�1

 !
ð25Þ

EGR rate can be found from species continuity equation for
burned gas [28]. In this paper the EGR rate is defined as the burned
gas fraction in inlet manifold. The burned gas is conducted to inlet
manifold from exhaust manifold using the EGR valve. Assuming
uniform accumulated mass in both exhaust and inlet manifolds,
the burned gas trapped in inlet manifold can be estimated as
follows:

d
dt

mx;i ¼ Xe _megr � Xi _mas ð26Þ

In which mx,i is the mass of burned gas in inlet manifold and Xi

and Xe are the burned gas fractions in inlet and exhaust manifolds
respectively, Xi (EGR rate) is defined as follows.

Xi ¼
mx;i

mi
ð27Þ

It should be noted that in lean operation, some fresh air might
exist in exhaust manifold; consequently, the EGR valve opening
cannot increase the burned gas fraction in inlet manifold. A simple
model is used for predicting the amount of unburned air in exhaust
gas. It is assumed that in lean operation, the injected fuel burns as
much air as demanded to provide a stoichiometric combustion and
the remaining air will leave the cylinder unburned, consequently
the mass flow rate of fresh air to exhaust manifold ð _mex;aÞ is
estimated as follows:

_mex;a ¼ _masð1� XiÞ � _mf � 14:7 ð28Þ

On the other hand, in the rich regime, all the available air will be
consumed and no fresh air enters the exhaust manifold i.e.
_mex;a ¼ 0 in rich operation. The mass of unburned air in exhaust

manifold is estimated as follows:

d
dt

ma;e ¼ _mex;a � ð1� XeÞð _megr þ _mtÞ ð29Þ

The burned gas ratio in exhaust manifold is calculated using fol-
lowing equation:

Xe ¼
me �ma;e

me
ð30Þ
3.5. In-cylinder process modeling

The ICP model is the core of our modeling scheme. Engine gen-
erated torque, exhaust emissions, volumetric efficiency (aspirated
air mass flow to cylinder) and exhaust gas temperature are calcu-
lated based on engine cycle thermodynamic model. Since the cycle
thermodynamic model is computationally complex and not suit-
able for dynamic modeling, ANN modeling tool is used instead.
As many data sets are needed to model the in-cylinder process
with desired level of accuracy, a validated model-based approach
is employed to make adequate data to train a neural network.
AVL-Boost as an engine modeling package is used to model the
thermodynamic cycle of a 1.5L common rail light duty diesel
engine. Fig. 5 shows the flow-work of our research. However, the
detailed thermodynamic modeling is not stated here and the inter-
ested readers can be found the detailed modeling approach in [29].

3.5.1. Cycle modeling using AVL-Boost
AVL-Boost is a powerful thermodynamic simulation software

which is able to model the engine cycles using schematic blocks.
Modeling tools need some engine geometric and phenomenal
properties to simulate engine performance better. Some
geometrical and operational data are obtained using
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manufacturing data. Valve properties, injector specification and
friction properties of engine are the most important specifications
in our modeling. A major problem in engine modeling is estimating
the friction of engine parts and pumping losses. Willans line is used
to find the Friction Mean Effective Pressure (FMEP) in each engine
speed.

3.5.2. Neural network modeling
3.5.2.1. Data generation. The developed model is used to generate
required data for neural network development. About 3000 data
is generated in whole possible engine operational points. Due to
large input space (10 inputs) the factorial method would ends in
too many data points. So the Sobol method is used to generate
the desired data. Sobol method is a statistical method which
obtains sequences in n-dimensional cube with low discrepancy
[30]. In our research a 10 dimensions vector is considered as input
data which is simply bounded between two minimum and maxi-
mum limits. The generated input data sets are used as inputs to
the developed AVL-Boost model. For every set of data, 5 outputs
are generated.
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3.5.2.2. Neural network structure and training. Although the gener-
ated data covers the whole engine operational space, it is not suffi-
cient for prediction of engine behavior in all of its operational
conditions. So ANN as a powerful interpolator is used. Regarding
the largeness of data dimensions and the number of data sets, an
appropriate structure and training method should be used. Multi-
Layer Perceptron (MLP) is used as a regular ANN structure. Due
to large space of input and outputs and lack of data in comparison
to whole operating range, there is high tendency to over-fit in
training procedure. In order to avoid over-fitting and increasing
the generalization of network, Bayesian regularization method is
used for training the network. The Bayesian method is a probabilis-
tic method which takes into account both the network architecture
and estimation error while training. A sophisticated study on
Bayesian training method is done by Bishop and Christopher [31]
and also Lampinen and Vehtari [32].

Among five outputs, the emission outputs and specially soot
shows different learning behaviors. The nonlinear behaviors of soot
generation makes it difficult to train parameter. Due to different
behavior of soot and NOx, a distinct network is employed to
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imitate the emissions behavior. The soot and NOx outputs have
trained to network based on their pure mass (not brake specific
emission generation). In order to be able to use these affective
parameters as inputs for the network, two parallel neural networks
are employed for modeling of all outputs as shown in Fig. 6. The
first network is used to model torque, inducted mass and exhaust
temperature while the second one is responsible for prediction of
raw emissions.

As depicted in Fig. 6, for the first network a two layers ANN hav-
ing 10 and 12 neurons in hidden layers is used, which is important
to performance prediction i.e. torque, aspirated air and exhaust
temperature. In the second network a two layer ANN with 10
and 15 nodes in hidden layers are employed due to more complex
behavior of emission generation.

Every MLP structure is designed with two hidden layers and sig-
moid activation functions for hidden layers and linear activation
function for the output layers. The number of neurons in MLP
structure is selected based on minimum error and calculation
parameters.

3.6. Engine inertial modeling

The Euler equation is employed for modeling the engine inertial
dynamics. The inertia of engine compromises the crankshaft, the
equal reciprocal piston masses and other moving parts of engine.
The rotational speed of engine is calculated using the following
equation:

_xeng ¼
sb � sl

Ien
ð31Þ

In which sb is the engine generated torque and sl is external
load torque. sb is the generated net torque and is derived from
ICP model. It should also be noted that the friction and pumping
losses have been considered in ICP.
Table 2
The engine specifications.

Displaced volume 1497 CC
Number of cylinders 4
Stroke 82.5 mm
Bore 76 mm
Connecting rod 134.25 mm
Compression ratio 16.5:1
Number of valves per cyl. 4
Injection system Common rail
Air boost system VGT + intercooler

1

1.5

2

0.02

0.04

0

0.2

0.4

0.6

0.8

φMach

η c

Fig. 7. Non-dimensional function
4. Results and discussion

4.1. Engine and turbocharger specifications

In this paper a 1.5L common rail turbocharged diesel engine is
considered. The engine specifications are listed in Table 2.

Piezoelectric injectors with 8 holes (0.11 mm diameter) are
used in the engine fuel injection system. Injector flow map is used
to model the injection process.

Turbocharger is the other important component of engine,
which is considered in engine dynamic modeling. As discussed ear-
lier, a non-dimensional approach is employed to promote predic-
tion capability of model to cover whole turbocharger operational
space. The data are extracted from turbine and compressor map
and converted to desired non-dimensional values. Matlab�

Surface Fitting Tool™ is used to find the appropriate polynomial,
which can best describe the relation between non-dimensional
values. The non-dimensional functions which are used in compressor
modeling are depicted in Fig. 7. It is seen that instead of / = g1(w, M)
function which was already shown in Table 1, w = g4(/, M) is
fitted due to better abilities to be fitted by polynomials. Then
inverse function technique is used to derive desired function out
of it.

The non-dimensional functions for turbine modeling are shown
in Fig. 8.

As discussed earlier intercoolers are also modeled using heat
exchanger equation as described in Eqs. (22) and (23). The heat
exchanger efficiency is strictly depended to air mass flow rate
through it. Using experimental data and curve fitting technique,
a twin exponential function is derived which can best describe
the dependence of intercooler efficiency to air mass flow rate
(see Fig. 9).
4.2. Model execution properties

As discussed before the whole modeling can be taken into fol-
lowing parts: combustion modeling and dynamic modeling. For
combustion modeling AVL-Boost is used. More than 3000 data sets
are generated. The AVL-Boost employs an iterative solving proce-
dure for a single cycle simulation for data generation purposes.
The convergence criteria for simulation termination was set to 10
iterates. Every cycle simulation took about 25–30 s; altogether
the data generation process took more than 24 h. Matlab�

(R2010a)/Neural Network Toolbox is employed for generation
and training of required ANN. On the other hand, the dynamic
model is developed in Matlab� (R2010a)/Simulink� (ver. 7.5).
The variable step solver of ‘‘ode15s’’ is used to simulate the model
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due to its high simulation speed and it adequate accuracy in the
simulation of this specified model. The simulation of engine opera-
tion for a 600 s procedure of variation of load and injection quan-
tity takes about 5.64 s with 0.48 s for model initialization period.
This simulation duration is for dedicated engine simulation with-
out any controller applied to model.

4.3. Model validation

For model validation aims, the engine is tested both in static
and transient modes. The static test data is used mainly to validate
ICP model (combustion model) while transient data sets are used
to validate the complete (dynamic model).

4.3.1. Combustion model validation
After model verification, the developed model is validated using

a comparison between model outputs and test data. Both crank
angle-based data and cyclic cumulative data i.e. torque and emis-
sions are used for validation purposes. The combustion pressure
profile is compared with model results. The pressure-crank angle
data of engine is recorded using pressure sensors mounted on
the engine cylinder head. The following figures show the compar-
ison between experimental pressure data and model results.

As depicted in Figs. 10 and 11 the test results and simulation for
engine operation in full load condition are in good agreement.

Another comparison is also done based on cyclic cumulative
values. In order to better validate the model results, whole engine
operating space is considered. Engine is tested in both part load
and full load conditions; the comparison is done for torque genera-
tion, aspirated air, NOx and Soot generation in whole engine
operating space. The errors in part load conditions are estimated
based on comparison between model outputs and experimental
data. The net errors in whole engine operation regime are 1.7%,
2.2%, 3.4% and 4.3% respectively for torque generation, aspirated
air, NOx and soot generation.

4.3.2. Neural network evaluation
The results of training and performance of network is evaluated

by calculating the error of network to untrained data sets and also
using the comparison between experimental data and neural net-
work results. About 2500 data sets are used for training network.
500 data sets remained for evaluation purposes. For evaluation of
rational performance Eq. (32) is used:

er ¼
P500

i¼1 jmi � tijP500
i¼1 jtij

� 100 ð32Þ
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where mi and ti are the neural network result and AVL model value
respectively. The results shows 2.4% error in modeling the aspirated
air mass, 3.9% error in estimation of generated torque, 5.4% error in
NOx amount, 5.8% error in Soot modeling and 2.2% error in predic-
tion of exhaust temperature.

As stated earlier, all the results have errors lower than 6%. The
inducted air and exhaust temperature have the least errors while
torque and emissions have fairly acceptable errors. Also for better
ANN evaluating, the results are compared with experimental data.

The comparison of full load data test, AVL model results and
ANN model is done to check the validity of the models. Since the
ANN model will be used in whole engine operating conditions,
the validity of model should be considered in both full load and
part load. The engine is tested under different full load and part
load speeds and brake torque, aspirated air, NOx, soot, BSFC and
exhaust gas temperature is considered and compared. The results
show good agreement in both full load and part load. The results
of AVL model and ANN model are compared with real data as
depicted in Fig. 12.

The comparison of ANN model data and test data is also done in
part load. The results show the contour of error percentage of dif-
ferent outputs in BMEP vs. engine speed plane as depicted in
Fig. 13. The results show good agreement between model results
and test data.

4.3.3. Dynamic model validation (step response)
The proposed dynamic modeling method (EMVM) is validated

by comparison of both step response and frequency response of
model results and test data. In this section, the step response data
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Fig. 12. Comparison of ANN, AVL model
are employed to validate the dynamic model. The effect of main
engine inputs such as injected fuel mass, engine load, EGR valve,
throttle valve, VGT position, rail pressure and injection pattern
on engine outputs are measured and compared with model results.
The ambient condition (air pressure and temperature) are con-
trolled to be in standard values both for model and experimental
equipment.

The test result of injected fuel increase is shown in Fig. 14. The
injected fuel is increased from 16 mg/cycle to 18 mg/cycle in con-
stant engine load of 78 N m; the engine speed increases as well.
However due to external load and engine inertia, the relatively
slow engine speed increase is achieved. The lambda sensor shows
decrease in k which means a richer mixture is provided due to fuel
increase. Due to engine dynamics i.e. slow engine speed increase
an under-shoot is seen in k which in turn lead to soot generation
soon after injection value manipulation. Also, a relatively slow
NOx decrease is seen after indicted fuel increase which is mainly
due to decrease in k value. The whole results show good agreement
between experimental results and data ones, however there is a
deviation in emission prediction, which is negligible.

To validate the load acceptance of model, a step load increase
test is done on the engine, in constant engine operation condition;
an increase in load stimuli is done using dynamometer from
60 N m to 75 N m. The test results and model prediction is illus-
trated in Fig. 15. As depicted, the engine speed decrease and settle
down to new value. On the other hand, an overshoot is seen in
lambda in the first moments of load acceptance. The main reason
is turbocharger lag, i.e. engine speed decrease faster than tur-
bocharger and causes pressure increase in inlet manifold; which
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outputs and test results in full load.
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Fig. 13. Error percentage of ANN results and experimental data in part load.
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in turn, increases the aspirated air mass for a while. As constant
fuel is injected in this period, the mixture gets leaner in the first
instants of load exertion and soon after, the richness will gradually
disappear. The influence of load on lambda shows a non-minimum
phase behavior. The increase of NOx is mainly due to decrease of
lambda which will result in an increase of maximum cylinder
temperature. The comparison of test and simulation results shows
acceptable accordance.

The effect of EGR valve opening on engine operation is depicted
in Fig. 16. The EGR valve is widely open from 20% to 80% in the
10th second of test. The described stimuli will end to increase in
EGR rate in a relatively fast manner. As some amount of the
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available air in inlet manifold is replaced by burned gas, the
lambda decreases in a comparable speed to EGR rate increase. On
the other hand, due to increase of EGR rate, the NOx production
rate decreases while soot generation increases.

Modern diesel engines are equipped with VGT turbochargers to
better control the inlet manifold pressure to desired values. Inlet
manifold pressure influences engine parameters in different man-
ners; engine torque, emissions and even EGR rate is highly affected
by turbocharger blade angle. The dynamics of turbocharger besides
engine inherent dynamics, results in complicated behavior of
engine. The less opening of VGT would result to pressure increase
in inlet manifold due to increase of turbine efficiency. The
responses of engine to VGT opening decrease from 60% to 30% is
depicted in Fig. 17. The engine speed shows a non-minimum phase
behavior in response to VGT angle, i.e. while decrease the VGT
opening engine speed shows a decrease in primitive moments,
after which it increase to a limited value. Turbocharger speed
increases in response to VGT opening decrease. This leads to inlet
manifold pressure increase. NOx is a little increased while soot is
mainly decreased due to inlet pressure boost. The non-minimal
phase behavior of NOx is affected by EGR variation due to inlet
manifold pressure change.

Diesel engines are not typically equipped with throttle valve;
instead, fuel injection is employed to control the engine torque.
In higher engine speeds and full load condition, less EGR rates
are available due to high inlet manifold pressure which decreases
the tendency of exhaust burnt gas to flow from exhaust manifold
to inlet manifold. Throttle valves are used to decrease the inlet
manifold pressure and increase the EGR rate. A Multi-Input
Multi-Output (MIMO) controller is developed to control both pres-
sure and EGR rate using VGT, EGR valve and Throttle valve actua-
tors. The model is validated using experimental data which is
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Fig. 17. Effect of a step decrease in VGT blade position from 60% to 20% in t = 10 s, Prail = 1100 bar, xegr = 50%, xth = 100%, hinj = 2� BTDC, Dhpilot ¼ 20 BTDC, mp = 1.1 mg
cycle,

mf ¼ 15 mg
cycle, sb ¼ 75 N m.
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Fig. 18. Effect of a step decrease in Throttle valve from 100% to 30% in t = 10 s, Prail = 1400 bar, xegr = 30%, xvgt = 20%, hinj = 2� BTDC, Dhpilot ¼ 13� , mp = 1.35 mg
cycle, mf ¼ 18 mg

cycle,
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288 K. Nikzadfar, A.H. Shamekhi / Fuel 154 (2015) 275–292
obtained by a VGT actuator step test; the comparison results are
illustrated in Fig. 18. The engine RPM and turbocharger speed
shows a slow decreasing trend while a sharp decrease in inlet
manifold is seen due to decreasing the opening area of throttle
valve. The decrease in throttle valve opening results in increasing
the flow loss in air induction path which in turn decreases the
manifold pressure; as a result more exhaust gas is inducted to inlet
manifold in fix EGR valve opening which in turn increase the EGR
rate from 4% to about 9%. The comparison of simulation results
with experimental data shows good agreement between model
and real data.

Rail pressure is another important factor which can affect on
emissions of engine to some extent in a relatively fast manner.
The results of variation of fuel rail on engine emissions are shown
in Fig. 19. In both cases a fluctuation in emission production rate is
seen which is due to effects of rail pressure on engine speed. It
should be noted that since the injection pressure can affect torque
generation the engine speed is varied in constant load test proce-
dure. As depicted in Fig. 19, the higher inlet manifold pressures
increase NOx while decrease the soot. The better fuel atomization
will increase the mixing process which in turn will make a more
uniform mixture in sense of AFR. The result is decrease in soot pro-
duction. On the other hand, the better mixing results in tempera-
ture increase, which will produce more nitrogen radicals. The
availability of nitrogen radicals will increase the NOx generation
rate. Also increasing the injection pressure will increase the part
of fuel which is injected in premixed combustion phase that is usu-
ally the hottest part of diesel combustion. A comparison between
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Fig. 19. Effect of a step increase in rail pressure from 900 bar to 1300 bar in t = 10 s, xegr = 40%, xvgt = 40%, xth = 100%, hinj = 2� BTDC, Dhpilot ¼ 13� , mp = 1.2 mg
cycle, mf ¼ 16 mg
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test data and simulation results shows a delay in test result while
being compared to real data which is mainly due to not modeling
the rail pressure control module in the model.

Injection pattern i.e. main and pilot injection timing are two
main effective parameters which can affect engine emission to
high extent. In order to validate the model, a two-step test is done
on the engine. In the first step, the main injection timing is
advanced from 1� ATDC to 5� BTDC in the 10th second of the test,
after which an advance in pilot injection in occurred from 15�
BTDC to 30�BTDC in 50th second. The results are illustrated in
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Fig. 20. Effect of a step advance in main injection timing from hinj = 5 BTDC to hinj = 1 ATD
in t = 50 s, xegr = 40%, xvgt = 40%, xth = 100%, mp = 1.2 mg

cycle, mf ¼ 16 mg
cycle, sb ¼ 80 N m.
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Fig. 21. The comparison of frequency responses of EGR valve variation on relevant states
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Fig. 20. The results show good agreement between test and model.
It’s also shown that injection timing can rapidly affect the engine
emission.

4.3.4. Dynamic model validation (frequency response)
However, the step response is useful in validation of dynamic

models; frequency response comparison – where possible- will
help us to validate the model in its whole frequency range for
specific operating points. Since the model is developed in Matlab
Simulink�, it is possible to derive the frequency response between
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any desired input and output. On the other hand, sinusoidal stimuli
with defined frequency and limited amplitude are used as inputs
and relevant outputs are measured to find the relative amplitude
of output signal to input signal. In this comparison, the engine
main dynamic inputs (EGR valve position and VGT blade position)
altogether with injection mass are considered for test. The sinusoi-
dal inputs with frequency of 0.01, 0.05, 0.1, 0.5, 1, 5 and 10 rad/s
are used to test the engine. Since the whole model is nonlinear,
the test should be done for a specific operating point, where it is
possible to linearize the model around it. The emissions in follow-
ing result are measured in mass flow rate of g/s rather than the
brake specific generation rate.

The results of comparison of frequency response of EGR valve
position of inlet manifold pressure, EGR rate and emissions are
depicted in Fig. 21. The test has been done in 3000 rpm with 60%
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Fig. 22. The comparison of frequency responses of VGT position variation on relevan
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Fig. 23. The comparison of frequency responses of main injection variation on relev
Dhpilot ¼ 23� , mp = 2.5 mg

cycle, sl ¼ 121 N m.
load. The result of tests shows that the test data and model data
are in agreement in both low frequency and high frequencies.
The low frequency proximity confirms that the steady state error
should not be significant in step response test.

In order to study the effects of VGT blade position on engine
operation; the frequency response between it and inlet manifold
pressure, turbocharger speed and emissions are considered as
depicted in Fig. 22. The test has been done in 2500 rpm and 80%
load. The comparison between test and model results shows that
the responses are in acceptable agreement. The lower frequencies
in emission relevant have some meaningful difference that shows
a steady state error in step response.

The matching between turbocharger speed and inlet manifold
pressure is good in lower frequencies, which shows that the pro-
posed method of turbocharger modeling can predict the turbine
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and compressor efficiency and mass flow well enough. On the
other hand, it diverges in higher frequencies, which is mainly
due to unmolded dynamics and specially the friction of tur-
bocharger interconnecting shaft.

The dynamic influences of injection mass on lambda, EGR rate
and emissions are also studied and the results are shown in
Fig. 23. The comparison of model outputs with experimental data
shows that they are in good agreement. The result shows a devia-
tion in lower frequencies in both lambda and EGR rate frequency
responses. The emissions are well modeled in dynamic operation.
5. Conclusion

The extended mean value model (EMVM) for control-oriented
modeling of internal combustion engines is investigated based on
block oriented modeling (BOM) concept. EMVM concept increases
the capability of conventional MVMs in prediction of engine raw
emissions and performance in transient regimes. The proposed
model is able to predict the influences of main/pilot injection
and timing, EGR valve position, VGT blade angles and throttle valve
on brake torque, BSFC, soot and NOx in transient regimes. The
specifications of EMVM in both accuracy and fast running aspects
make it appropriate for model-based control development and real
time applications. The BOM is a systematic point of view, which
assumes the whole nonlinear dynamic systems to be composed
of relatively simple dynamic systems coupled with high nonlinear
semi-static systems.

The BOM concept is consistent with engine essence. The engine
behavior is assumed to be associated with some distinct sub-
systems containing Inlet and Exhaust System (IES), Engine Inertial
Systems (EIS), In-Cylinder Process (ICP) and Fuel Delivery System
(FDS). All the sub-systems are naturally dynamic, but for modeling
aims, the fast dynamic systems (ICP and FDS) are considered as
semi-static systems. The ICP is the core of engine model and con-
tains the complex combustion and gas exchange processes mean-
while it is responsible for prediction of performance and raw
emissions. Due to complexity of combustion process, usually high
computational burden models with iterative solution methods are
used, which increase the time of simulation to high extend and
make it inappropriate for control-oriented and real-time sim-
ulation. The combustion model is usually implemented in MVM
using look-up tables, interpolated algebraic equation or crank
angle based models. The tabulated data and interpolated equation
methods are rapid but they have rarely been considered for
modeling the emissions due to level of inaccuracy in emission
modeling. Application of steady state data into MVM leads to
inefficient models, which cannot predict the emissions with
desired accuracy in transient modes; usually correction factors
are used to compensate for transient prediction errors. On the
other hand the number of inputs to combustion is limited which
is not favorable for today control demands. In some models, the
thermodynamic modeling coupled with chemical reaction models
has been implemented in MVM models. Unfortunately, this type
of modeling is computationally inconsistent with real time appli-
cations and makes the model too slow to run for control purposes.
In this paper, ANN is employed to imitate the result of ICP model-
ing instead of using iterative solutions. Two parallel ANNs with
two layers in each stage is trained offline and finally implemented
in the main engine model. One of them is used for prediction of
performance and the other is responsible for emission prediction.
The Bayesian training method is used for overcoming the over-
fitting problem. The application of ANN decreases the time of
modeling from 25 s/cycle to the order of 50 ls for running an
ANN while retained the accuracy of model. The IES system contains
the manifold phenomena and turbocharger dynamics. Both the
mass and energy balance equations are used to model the dynamic
process involved with the IES. Due to influences of EGR rate on
engine emissions, the dynamic of burned gas fraction in both inlet
and exhaust are considered using the mass balance for species. The
developed model is validated in both steady and transient regimes.
A test setup is used to derive the experimental data for validation
task. The results of steady tests shows 2.4% error in modeling the
aspirated air mass, 3.9% in estimation of generated torque, 5.4%
in NOx amount, 5.8% in soot modeling and 2.2% in prediction of
exhaust temperature. The transient validation is carried out both
with step responses and frequency response. The comparison of
experimental data with model outputs shows good agreement
between them. The duration of model execution for running the
model with limited white band noise signals applied on model
inputs is less than 5 s for a 600 s simulation, which is favorable
for real time application.
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