شبيهسازى و كنترل مود لغزشى - تطبيقى ربات تعادلى دوچرخ با معادلات ديناميكى بهبود يافته

> اميرحسين شامخى 1، آزاده شريعتى²، على غفارى33، سينا اميدفر4
> 1 - دانشيار، مهندسى مكانيك، دانشكاه خواجه نصيرالدين طوسى، تمران

$$
\begin{aligned}
& \text { 4- دانشجوى كارشناسى ارشد، مهندسى مكانيك، دانشگاه خواجه نصير الدين طوسى، تهران }
\end{aligned}
$$

چكيده	اطلاعات مقاله
در اين مقاله، كنترل ربات تعادلى دوچرخ بر اساس مدل بهبود يافته ربات ارائه شده است. مسأله ربات تعادلى دو چرخ به دليل وجود قيود غير 	
 	كليد وازثانان: ربات تعادلى دوپرخ
نيز براى ربات فراهم مىسازد. در ادامه، با استفاده از تئورى پايدارى ليايانوف، لم باربالي 	كنترلر مود لغزشى - تطبيقى تتؤوى پايدارى لياپانوف قضيه مجموعههاى ناوردا

Simulation and control system design for a two-wheeled self-balancing robot via adaptive sliding-mode technique using modified dynamical model

Amir Hosein Shamekhi*, Azadeh Shariati, Ali Ghaffari, Sina Omidfar
Department of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran
* P.O.B. 19395-1999 Tehran, Iran, shamekhi@.kntu.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 14 March 2015
Accepted 27 April 2015
Available Online 18 May 2015

Keywords:

Two-Wheeled Self-Balancing Robot
Modified Dynamical Model
Adaptive-Sliding Mode Controller
Lyapunov Theorem
Invariant Set Theorem

Abstract

The problem of two- wheeled self-balancing robot is an interesting and challenging problem in control and dynamic systems. This complexity is due to the inherent instability, nonholonomic constraints, and under-actuated mechanism. Dynamical model of two-wheeled self- balancing robot can be presented by a set of highly coupled nonlinear differential equations. Authors, previously, developed the modified dynamical equations of the robot. The governed equations have some differences with the commonly used equations. The main difference is due to the existence of a nonlinear coupling term which had been neglected before. In this paper an adaptive sliding mode controller based on the zero dynamics theory was used. The controller objective is to drive the two-wheeled self-balancing robot to the desired path as well as to make the robot stable. By some simulations the behavior of the robot with the proposed controller is discussed. It is shown that if the nonlinear coupling term is ignored in designing the controller, the controller cannot compensate its effect. Using Lyapunov theorem and the invariant set theorem, it is proved that the errors are globally asymptotically stable.

1 - مقدمه
در سالهاى اخير، مطالعه بر روى رباتهاى تعادلى دوپرخ باري بسيار گسترش

استفاده از مدل ديناميكى [1] به كنترل مود لغزشى- تطبيقى ربات دوچرخ

 را نيز براى ربات برآورده سازد. در ادامه با استفاهده از تئورى پایايدارى لياپپانوف،

 چهارم و در نهايـت جمعبندى نتايج در بخش پن رنجم مقاله انجام خواهد شد.

2 - توصيف سيستم

ربات تعادلى دوچرخى كه در اين مقاله بررسى مىشود، يكى بدنه است كه بر
 موتور DC هستند كه به چرخر درا متا متصل هستند. اين سيستم سه درجه رجه آزادى

 معكوس عمل مى كند. در شكلهاى 1 و 2 ربات تعادلى دوپر آر سان ساخته شده در قطب رباتيك و كنترلِ دانشكده مهيندسى مكانيكـِ دانشكاه صنعـي

شكل1 نمايش ربات تعادلى دوحرخ ساخته شده در قطب رباتيك و كنترل دانشگاه صنعتى خواجه نصيرالدين طوسى

شكل 2 نماى بالاى ربات تعادلى دوحرخ ساخته شده در قطب رباتيك و كنترل دانشگًاه صنعتى خواجه نصيرالدين طوسى به همر اه نمايش متغير هالى حالت
 براى طراحى كنترلر معادلات بدست آمده را حول نقطه كارى كردهاند [1]. سلمو و آنجل معادلات ديناميكى ربات را را با در نظر گر كرفتن زواياى پيجّ و دوران به عنوان متغيرهاى

 اضافه كردند [5]. تحقيقات بسيارى نيز بر روى مسأله كنترل و پايدارى اين

 ران

 و براى هر قسمت كنترلر مقاوم تطبيقى طراحى شدى شده است و پارارامترهایى

 رن و همكاران [11] از كنترلى كه تركي مشتقى و يكى شبكه عصبى است براى
 شامخى و غفارى [12] با استفاده از روش انت رئرال توسعهي ريافته، تابع ليایانوف
 لياپانوف طراحى كردند. از آنجا كه سيگنال كنترلى

 كرفت و پایدارى مجانبى سيستم كنترلى با با استفاده از تئورى پايدارى

 دوچرخ ارائه كردند. در مكانيزم ارائه شده، از يكى چرخ شده است، به اين صورت كه براى حرن حفظ تعادل از از عكس العمل ناشى از اع اعمال گشتاور موتور به اين چرخ استفا استاده مىشود. كيها

ديناميكى ربات سه درجه آزادى را به روش كِيني 2 بدست آور
 يكبار ديگر بدست آورده و آن را معادلات بهربوديافته ناميدند. ازينى آنجا آنجا كه

 درغياب نيروهاى غيريايستار برای معادلات و شبيهسازى ها اثبات شده است [1617]. يو و همكاران [18] با

1- Kim
2- Kane's approach

مقدار تعريف	واحد	خصوصيت
	$\left(\mathrm{kgm}^{2} / \mathrm{s}^{2}\right.$	τ_{1}, τ_{2}
سرعت خطى رو به جلوى ربات	(m / s)	u
جابجايى ربات در راستاى سرعت	(m)	ξ
زاويه بدنه	(rad)	θ
زاويه انحراف بدنه إله حانها	(rad)	γ
زواياى دوران پرخها	(rad)	φ_{1}, φ_{2}
موقيت ربات در صفحه افقى	(m)	X, Y
3/99	(kg)	$m_{c h}$
1/064 جرم چرخها	(kg)	m_{w}
$Y_{3_{c h}}{ }_{\text {C/043 }}$	(kg.m²)	$I_{y y_{C h}}$
$X_{3 c h}{ }^{\text {r }}$,	(kg.m²)	$I_{x x_{c h}}$
$Z_{3 c h}{ }_{\text {ch }}$ /	(kg.m²)	$I_{z z_{c h}}$
	(kg. m^{2})	$I_{1}{ }_{w}$
Y4w ${ }_{\text {w }}$ مكان اينرسى	(kg.m²)	$I_{2 w}$
9/81 شتاب جانب مركز	($\mathrm{m}^{2} / \mathrm{s}$)	g
(H C/1	(m)	r_{w}
C/2	(m)	1
و مر C/25 فاصله بين نقطه مبدنه ميانى خط متصل كننده دو چرخ	(m)	h

زير تعريف شدهاند.
$\Psi_{u}=-\frac{C_{u} A_{\gamma}}{A_{u} A_{\gamma}-B_{u} B_{\gamma}}, \quad \Lambda_{u}=\frac{B_{u} C_{\gamma}-A_{\gamma} C_{u}}{A_{u} A_{\gamma}-B_{u} B_{\gamma}}, \quad X_{u}=\frac{A_{\gamma} / r_{w}+B_{u}}{A_{u} A_{\gamma}-B_{u} B_{\gamma}}$,
$\Phi_{u}=\frac{B_{u} D_{\gamma}}{A_{u} A_{\gamma}-B_{u} B_{\gamma}}, \quad \Psi_{\gamma}=\frac{B_{\gamma} C_{u}}{A_{u} A_{\gamma}-B_{u} B_{\gamma}}, \quad \Lambda_{\gamma}=\frac{-C_{\gamma} A_{u}+B_{u} C_{u}}{A_{u} A_{\gamma}-B_{u} B_{\gamma}}$,
$\Phi_{\gamma}=-\frac{A_{u} D_{\gamma}}{A_{u} A_{\gamma}-B_{u} B_{\gamma}}, \quad X_{\gamma}=\frac{-\frac{B_{\gamma}}{r_{w}}-A_{u}}{A_{u} A_{\gamma}-B_{u} B_{\gamma}}, \quad \Lambda_{\theta}=\frac{B_{\theta}}{A_{\theta}}$,
$X_{\theta}=\frac{D_{\theta}}{A_{\theta}}$,
$\Psi_{\theta}=\frac{C_{\theta}}{A_{\theta}}$,
و
مى شوند.
$A_{u}=3 m_{w}+m_{c h}, \quad B_{u}=h m_{c h} \cos x_{1}$,
$C_{u}=-h m_{c h} \sin x_{1}, \quad A_{\gamma}=I_{y y_{c h}}+m_{c h} h^{2}$,
$B_{\gamma}=h m_{c h} \cos x_{1}, \quad C_{\gamma}=\frac{1}{2}\left[I_{x x_{c h}}+m_{c h} h^{2}-I_{z z_{c h}}\right] \sin 2 x_{1}$,
$D_{\gamma}=-h m_{c h} \sin x_{1}, \quad A_{\theta}=\left[2\left(m_{w} l^{2}+I_{2_{w}}\right)+I_{x x_{c h}} \sin ^{2} x_{1}\right.$

$$
\begin{aligned}
& +m_{c h} h^{2} \sin ^{2} x_{1} \\
& +I_{z z_{c h}} \cos ^{2} x_{1} \\
& \left.+m_{w} l^{2}\right]
\end{aligned}
$$

$B_{\theta}=-m_{c h} h \sin x_{1}, \quad C_{\theta}=-\left(m_{c h} h^{2}+I_{x x_{c h}}\right.$ $\left.-I_{z z_{c h}}\right) \sin \left(2 x_{1}\right)$
$D_{\theta}=\frac{1}{r_{w}}$,
با تعريف $T_{1}+T_{2}=T_{v} T_{1}-T_{2}=T_{w}$ مى شود: زيرسيستم طولى و زيرسيستم دورانى. زيرسيستم طولى شامل دو معادله اول از معادلات ديناميكى سيستم است و زير سيستم دورانى سومين معادله از معادلات ديناميكى ربات تعادلى است. زيرسيستم طولى با
 مواجه مىباشد، درحالى كه زيرسيستم دورانى با ورودى درجه آزادى داراى عملگر به ميزان كافى است. بنابراين زيرسيستم طولى با با با

متتيرهاى حالت اوليه سيستم بصورت در آن x و x موقعيت سيستم (نقطه ميانى بين دو چرخ) در صفحه افقى، θ (كه
 اندازهگيرى مىشود) و متغيرهاى φ_{1} و φ_{2} به تر تيب زواياى دور دوم مىباشند. پارامترهاى بدنه داراى زيرنويس و'ch' و پارامتر های
 ديفرانسيلى رسته دو بيان مىشود. فرضهایى زير نظر گرفته مىشیوند: - بدنه سيستم حول صفحات - از لغزش چرخْها صرفنظر شده است. در مراجع [17،16] معادلات ديناميكى بهبوديافته ربات تعادلى دوچرخ توسط نويسنده به دو روش كِين و لاکرانز بدست آمده است. معادلات ديناميكى ديا

زمين و اصطكاك لغزشى داخلى به صورت روابط (1) مىباشند:
$\left(3 m_{w}+m_{c h}\right) \dot{u}+h m_{c h}\left(\ddot{\gamma} \cos \gamma-\dot{\gamma}^{2} \sin \gamma\right.$

$$
\left.-\dot{\theta}^{2} \sin \gamma\right)=\frac{1}{r_{w}}\left(\tau_{1}+\tau_{2}\right)
$$

$\left[2\left(m_{w} l^{2}+I_{2_{w}}\right)+I_{x x_{c h}} \sin ^{2} \gamma+m_{c h} h^{2} \sin ^{2} \gamma\right.$
$\left.+I_{Z z_{c h}} \cos ^{2} \gamma+m_{w} l^{2}\right] \ddot{\theta}$
$+\left(m_{c h} h^{2}+I_{x x_{c h}}\right.$
$\left.-I_{z z_{c h}}\right) \sin 2 \gamma \dot{\theta} \dot{\gamma}$
$+m_{c h} h \sin \gamma \dot{\theta} u$
$=-\frac{l}{r_{w}} \tau_{1}+\frac{l}{r_{w}} \tau_{2}$
$\left(I_{y y_{C h}}+m_{c h} h^{2}\right) \ddot{\gamma}+m_{c h} h \cos \gamma \dot{u}$

$$
\begin{align*}
& +\frac{1}{2}\left[I_{x x_{c h}}+m_{c h} h^{2}\right. \\
& \left.-I_{z z_{c h}}\right] \sin 2 \gamma \dot{\theta}^{2}-m_{c h} g h \sin \gamma \\
& =-\tau_{1}-\tau_{2} \tag{1}
\end{align*}
$$

با مقايسه معادلات بهبوديافته با معادلات كيم [15] كه مرجع اصلى معادلات

 كنترلر نشان داده خواهد شد. مقادير عددى پارامترهاى ربات و تعاريف آنها در جدول 1 آمده است.

3 - طراحى كنترلر

هدف از طراحى كنترلر، بدست آوردن قوانين كنترلى است كه بدنه ربات را در

 مشخص مدنظر نمىباشد. براى طراحى كنترلر، با انتخاب متغيرهاى حالـ حالت به
 ربات تعادلى دوچرخ يعنى معادلات (1) را مىتوان به شكل روابط (2) بازنويسى كرد:
$\dot{x_{4}}=\Lambda_{\gamma} x_{6}^{2}+\Psi_{\gamma} x_{4}^{2}+X_{\gamma}\left(T_{1}+T_{2}\right)+\Phi_{\gamma} g$
$\dot{x_{5}}=\Lambda_{u} x_{6}^{2}+\Psi_{u} x_{4}^{2}+X_{u}\left(T_{1}+T_{2}\right)+\Phi_{u} g$
$\dot{x_{6}}=\Lambda_{\theta} x_{5} x_{6}+\Psi_{\theta} x_{4} x_{6}+X_{\theta}\left(T_{1}-T_{2}\right)$
كه در آن
α_{i}
زمان مى توان فرض كرد مى آيد:
$T_{v}=-\hat{\alpha}_{1} x_{6}^{2}-\hat{\alpha}_{2} x_{4}^{2}-\hat{\alpha}_{3}+\hat{\alpha}_{4}\left(\dot{x}_{5}^{*}-c_{1} \dot{e}_{2}\right)$
$-k_{1} \operatorname{sgn}\left(s_{1}\right)-k_{2} s_{1}$
و قوانين پارامترهاى تطبيقى به صورت روابط (12-15) خواهند بود:
$\dot{\hat{\alpha}}_{1}=\lambda_{11} s_{1}\left(x_{6}^{*}+e_{6}\right)^{2}$
$\dot{\hat{\alpha}}_{2}=\lambda_{12} s_{1}\left(x_{4}^{*}+e_{4}\right)^{2}$
$\dot{\hat{\alpha}_{3}}=\lambda_{13} s_{1}$
$\dot{\hat{\alpha}}_{4}=-\lambda_{14} s_{1}\left(\dot{x}_{5}^{*}-c_{1} e_{5}\right)$
كه در آنها

3 -2 - كنترل ديناميك صفر

 را با قرار دادن خطاى موق
 (1) بدست مى آيد:
$T_{v}=-\frac{\Lambda_{u}}{X_{u}} x_{6}^{2}-\frac{\Psi_{u}}{X_{u}} x_{4}^{2}-\frac{\Phi_{u}}{X_{u}} g+\frac{x_{5}^{*}}{X_{u}}$
با قرار دادن ${ }^{\text {ق }}$ در به صورت (17) بدست مى آيد:
$\dot{x_{4}}=\left(\Lambda_{\gamma}-\frac{X_{\gamma} \Lambda_{u}}{X_{u}}\right) x_{6}^{2}-\frac{C_{u}}{A_{\gamma}} g+\frac{X_{\gamma} \dot{x_{5}^{*}}}{X_{u}}$
هدف كنترلى از طراحى كنترلر ديناميكى صفر پيدا كردن ورودى براى كنترلر طولى يعنى ديناميك صفر به صورت رابطه (18) تعريف مى شود:
$s_{2}=\dot{e}_{1}+c_{2} e_{1}$
(18)

كه در آن زمان مشتق كرفت:
$\dot{s}_{2}=\ddot{e}_{1}+c_{2} \dot{e}_{1}=\left(\Lambda_{\gamma}-\frac{X_{\gamma} \Lambda_{u}}{X_{u}}\right) x_{6}{ }^{2}-\frac{C_{u}}{A_{\gamma}} g+\frac{X_{\gamma} \dot{x}_{5}^{*}}{X_{u}}$
با اعمال قانون نمايى يعنى صورت رابطه (20) طراحى كرد:
$\dot{x}_{5}^{*}=\frac{X_{u}}{X_{\gamma}}\left[\left(\frac{X_{\gamma} \Lambda_{u}}{X_{u}}-\Lambda_{\gamma}\right) x_{6}{ }^{2}+\frac{C_{u}}{A_{\gamma}} g+\dot{x}_{4}^{*}-c_{2} \dot{e}_{1}\right.$

$$
\begin{equation*}
\left.-k_{3} \operatorname{sgn}\left(s_{2}\right)-k_{4} s_{2}\right] \tag{20}
\end{equation*}
$$

كه در آن k و و k ثوابت طراحى و مثبت هست ما واقیى پارامترهاى مكانيكى در دسترس نيستند و بايد پارامترهاى جديد 1, $\beta_{3}=X_{u} / X_{\gamma} \quad, \quad \beta_{2}=\left(C_{u} / A_{\gamma}\right)\left(X_{u} / X_{\gamma}\right) \mathrm{g} \quad{ }_{1} \quad \beta_{1}=\Lambda_{u}-\Lambda_{\gamma} X_{u} / X_{\gamma}$ تعريف كرد كه به صورت پارامترهاى مكانيكى مىتوان فرض كرد شود با:
$\dot{s}_{2}=-\frac{\beta_{1}}{\beta_{3}} x_{6}^{2}-\frac{\beta_{2}}{\beta_{3}}+\frac{\dot{x}_{5}^{*}}{\beta_{3}}-\dot{x}_{4}^{*}+c_{2} \dot{e}_{1}$
سيس كنتر لر تطبيقى براى زير سيستم صفر را مىتوان از رابطه (22) بدست
$\left\{\begin{array}{l}\dot{x_{5}}=\Lambda_{u} x_{6}^{2}+\Psi_{u} x_{4}^{2}+X_{u} T_{v}+\Phi_{u} g \\ \dot{x_{4}}=\Lambda_{\gamma} x_{6}^{2}+\Psi_{\gamma} x_{4}^{2}+X_{\gamma} T_{v}+\Phi_{\gamma} g\end{array}\right.$
$\ddot{\theta}=\Lambda_{\theta} x_{5} x_{6}+\Psi_{\theta} x_{4} x_{6}+X_{\theta} T_{w}$
 درحالى كه سرعت روبهجلوى زاويه انحراف بدنه مستقيماً تحت تأثير

$e_{1}=x_{1}-x_{1}^{*}, \quad e_{2}=x_{2}-x_{2}^{*}, \quad e_{3}=x_{3}-x_{3}^{*}$
$e_{4}=x_{4}-x_{4}^{*}, \quad e_{5}=x_{5}-x_{5}^{*}, \quad e_{6}=x_{6}-x_{6}^{*}$
كه در آن هستند. براى حصول به زيرسيستم- طولى به صورت رابطه (6) تعريف مىشوند:

$$
\left\{\begin{array}{l}
\dot{e}_{2}=e_{5} \tag{б}\\
\dot{e}_{5}=\Lambda_{u} x_{6}{ }^{2}+\Psi_{u} x_{4}{ }^{2}+X_{u} T_{v}+\Phi_{u} g-\dot{x}_{5}^{*} \\
\dot{e}_{1}=e_{4} \\
\dot{e}_{4}=\Lambda_{\gamma} x_{6}{ }^{2}+\Psi_{\gamma} x_{4}^{2}+X_{\gamma} T_{v}+\Phi_{\gamma} g-\dot{x}_{4}^{*}
\end{array}\right.
$$

به طور مشابه معادله خطا براى زيرسيستم- دورانى به صورت رابطه (7) تعريف مىشود:
$\left\{\begin{array}{l}\dot{e}_{3}=e_{6} \\ \dot{e}_{6}=\Lambda_{\theta} x_{5} x_{6}+\Psi_{\theta} x_{4} x_{6}+X_{\theta} T_{w}\end{array}\right.$
در اين بخش روشهاى مود لغزشى - تطبيقى براى استخراج كنترلر استفاده

 مقاوم است و خاصيت تطبيقى آن باعث مى شود كا كه نسبت به تغيير پارا امترهاى مكانيكى مقاوم باشد.

ر 13

 باشد. براى اعمال كنترلر مود لغزشى، سطح لغزشى را به صورت رابـن تعر يف مىشود:
$s_{1}=\dot{e_{2}}+c_{1} e_{2}$
كه در آن c_{1} ثابت و مثبت است. مشتق سطح لغزشى نسبت به زمان را مى-
توان به صورت رابطه (9) بدست آورد:
$\dot{s}_{1}=\ddot{e}_{2}+c_{1} \dot{e}_{2}=\Lambda_{u} x_{6}^{2}+\Psi_{u} x_{4}^{2}+X_{u} T_{v}+\Phi_{u} g-\dot{x}_{5}^{*}+c_{1} \dot{e}_{2}$
با اعمال قانون روش نمايى1، يعنى به سطح لغزش، كنترلر را مى توان به صورت (10) طراحى كرد: $T_{v}=-\frac{\Lambda_{u}}{X_{u}} x_{6}^{2}-\frac{\Psi_{u}}{X_{u}} x_{4}^{2}-\frac{\Phi_{u}}{X_{u}} g+\frac{1}{X_{u}}\left(\dot{x}_{5}{ }^{*}-c_{1} \dot{e}_{2}\right.$

$$
\begin{equation*}
\left.-k_{1} \operatorname{sgn}\left(s_{1}\right)-k_{2} s_{1}\right) \tag{10}
\end{equation*}
$$

 $\alpha_{2}=\Psi_{u} / X_{u} ، \alpha_{1}=\Lambda_{u} / X_{u}$ كنند به همين دليل پارامترهاى تطبيقى
 $\tilde{\alpha}_{i}=\hat{\alpha}_{i}-$ است، $\alpha_{i}(i=1,2,3,4)$
$V_{2}=\frac{1}{2} \beta_{3} s_{2}^{2}+\frac{1}{2 \lambda_{21}} \tilde{\beta}_{1}^{2}+\frac{1}{2 \lambda_{22}} \tilde{\beta}_{2}^{2}+\frac{1}{2 \lambda_{23}} \tilde{\beta}_{3}^{2}$
$V_{3}=\frac{1}{2} \kappa_{3} s_{3}^{2}+\frac{1}{2 \lambda_{31}} \tilde{\kappa}_{1}^{2}+\frac{1}{2 \lambda_{32}} \tilde{\kappa}_{2}^{2}+\frac{1}{2 \lambda_{32}} \tilde{\kappa}_{3}^{2}$
از طرفى با تعريف
 صورت (40) بدست مىآيند:
$\dot{s}_{1}=\frac{\alpha_{1}}{\alpha_{4}} x_{6}^{2}+\frac{\alpha_{2}}{\alpha_{4}} x_{4}^{2}+\frac{\alpha_{3}}{\alpha_{4}} g+\frac{1}{\alpha_{4}} T_{v}-\dot{x}_{5}^{*}+c_{1} \dot{e}_{2}$
$\dot{s}_{2}=-\frac{\beta_{1}}{\beta_{3}} x_{6}^{2}-\frac{\beta_{2}}{\beta_{3}}+\frac{\dot{x}_{5}^{*}}{\beta_{3}}-\dot{x}_{4}^{*}+c_{2} \dot{e}_{1}$
$\dot{s}_{3}=\frac{\kappa_{1}}{\kappa_{3}} x_{5} x_{6}+\frac{\kappa_{2}}{\kappa_{3}} x_{4} x_{6}+\frac{1}{\kappa_{3}} T_{w}-\dot{x}_{6}^{*}+c_{3} e_{3}$
با مشتق گيرى V نسبت به زمان رابطه (41) بدست مى آيد:
$\dot{V}=\dot{V}_{1}+\dot{V}_{2}+\dot{V}_{3}$
كه در آن $\dot{V}_{1}=\alpha_{4} s_{1} \dot{s}_{1}+\frac{1}{\lambda_{11}} \tilde{\alpha}_{1} \dot{\tilde{\alpha}}_{1}+\frac{1}{\lambda_{12}} \tilde{\alpha}_{2} \dot{\tilde{\alpha}}_{2}+\frac{1}{\lambda_{13}} \tilde{\alpha}_{3} \dot{\tilde{\alpha}}_{3}$

$$
\begin{equation*}
+\frac{1}{\lambda_{14}} \tilde{\alpha}_{4} \dot{\tilde{\alpha}}_{4} \tag{42}
\end{equation*}
$$

و با جايگذارى (15-12) و (38) در (42)، رابطه (43) بدست مى آيد:
$\dot{V}_{1}=-k_{1}\left|s_{1}\right|-k_{2} s_{1}^{2}$
به طور مشابه با در نظر كرفتن تقريبهاى شوند با:
$\dot{V}_{2}=-k_{3}\left|s_{2}\right|-k_{4} s_{2}^{2}$
$\dot{V}_{3}=-k_{5}\left|s_{3}\right|-k_{6} s_{3}^{2}$
و بنابراين
$\dot{V}=-k_{1}\left|s_{1}\right|-k_{2} s_{1}^{2}-k_{3}\left|s_{2}\right|-k_{4} s_{2}^{2}-k_{5}\left|s_{3}\right|$
$-k_{6} s_{3}^{2}$
از آنجا كه زير ارائه مىشود.
لم 1: نقطه تعادل صفر براى سيستم (6)، (7) و (17) با (17) كنترلر مود لغزشى (12 (23) تطبيقى (11)، (22) و (29) و قوانين تطبيقى (12-15)، (23-23) و (30-1 (1) (1)

$\lim _{t \rightarrow \infty} \dot{V}(t)=0$
يعنى:
اثبات: با در نظركرفتن انتگرال
$I=\int_{0}^{\infty}-\dot{V}(t) d t=V(0)-V(\infty)$
با توجه به اينكه
 است (

كه مشتق آن محدود باشد. (روابط 48.49):
$\ddot{V}=-k_{1} \frac{s_{1}}{\left|s_{1}\right|}-2 k_{2} \dot{s}_{1} s_{1}-k_{3} \frac{s_{2}}{\left|s_{2}\right|}-2 k_{4} \dot{s}_{2} s_{2}$

$$
\begin{equation*}
-k_{5} \frac{s_{3}}{\left|s_{3}\right|}-2 k_{6} \dot{s}_{3} s_{3} \tag{48}
\end{equation*}
$$

$\ddot{V} \leq k_{1}+k_{3}+k_{5}+2 k_{2} k_{1} s_{1} \operatorname{sgn}\left(s_{1}\right)+2 k_{2} k_{2} s_{1}^{2}$
$+2 k_{4} k_{3} s_{2} \operatorname{sgn}\left(s_{2}\right)+2 k_{4} k_{4} s_{2}^{2}$
$+2 k_{6} k_{5} s_{3} \operatorname{sgn}\left(s_{3}\right)+2 k_{6} k_{6} s_{3}^{2}$
با در نظر كرفتن انتگرال (
$\dot{x}_{5}^{*}=\widehat{\beta}_{1} x_{6}^{2}+\widehat{\beta}_{2}+\widehat{\beta}_{3}\left(\dot{x}_{4}^{*}-c_{2} \dot{e}_{1}\right)-k_{3} \operatorname{sgn}\left(s_{2}\right)-k_{4} s_{2}$
و قوانين تطبيقى به صورت روابط (23-25) تعريف مىشوند:
$\dot{\hat{\beta}}_{1}=-\lambda_{21} s_{2} x_{6}^{2}$
$\dot{\hat{\beta}_{2}}=-\lambda_{22} s_{2}$
$\dot{\hat{\beta}}_{3}=-\lambda_{23} s_{2}\left(\dot{x}_{4}^{*}-c_{2} e_{4}\right)$
كه در آن
3-3 - 3 - 3 احر كنترلر حركت دورانى
 مسير دلخواه را دنبال كند. در زيرسيستم -دورانى زاويه دوراني مستقيم توسط گشتاور Tw كنترل مى شود. سطح لغزش برال براى كنترل دورانى

به صورت روابط (2627) تعريف مىیود:

$$
\begin{align*}
s_{3}= & \dot{e}_{3}+c_{3} e_{3} \tag{26}\\
\dot{s}_{3}= & \ddot{e}_{3}+c_{3} \dot{e}_{3}=\Lambda_{\theta} x_{5} x_{6}+\Psi_{\theta} x_{4} x_{6}+X_{\theta} T_{w}-\dot{x}_{6}^{*} \tag{27}\\
& +c_{3} \dot{e}_{3}
\end{align*}
$$

با اعمال قانون نمايى يعنى صورت رابطه (28) طراحى كرد: $T_{w}=-\frac{\Lambda_{\theta}}{X_{\theta}} x_{5} x_{6}-\frac{\Psi_{\theta}}{X_{\theta}} x_{4} x_{6}+\frac{1}{X_{\theta}} \dot{x}_{6}^{*}-\frac{c_{3}}{X_{\theta}} \dot{e}_{3}$ $-\frac{k_{5}}{X_{\theta}} \operatorname{sgn}\left(s_{3}\right)-\frac{k_{6}}{X_{\theta}} s_{3}$
كه

 تطبيقى به صورت: شوند كه به صورت مكانيكى در طى زمان مى توان فرض كرد تطبيقى را بصورت رابطه (29) نوشت:
$T_{w}=-\hat{\kappa}_{1} x_{5} x_{6}-\hat{\kappa}_{2} x_{4} x_{6}+\hat{\kappa}_{3} \dot{x}_{6}^{*}-c_{3} \hat{\kappa}_{3} \dot{e}_{3}$ $-k_{5} \operatorname{sgn}\left(s_{3}\right)-k_{6} s_{3}$
و قوانين تطبيقى به صورت روابط (30-32) خواهند بود:
$\dot{\hat{\kappa}}_{1}=\lambda_{31} s_{3}\left(x_{6}^{*}+e_{6}\right)\left(x_{5}^{*}+e_{5}\right)$
$\dot{\hat{\kappa}_{2}}=\lambda_{32} s_{3}\left(x_{4}^{*}+e_{4}\right)\left(x_{6}^{*}+e_{6}\right)$
$\dot{\hat{\kappa}}_{3}=-\lambda_{33} s_{3}\left(\dot{x}_{6}^{*}-c_{3} e_{6}\right)$
كه در آنها
تحليلهاى بالا قضيه زير را مىتوتوان بيان كرد.
قضيه 1: سيستم (6)، (7) و (17) را با كنترلر مود لغزشى- تطبيقى (12)، (22) و (29) و قوانين تطبيقى (12-15)، (23-25) و (32-30) در نظر

كرفته مىشود. خطاها به صورت نمايیى به سمت صفر ميل مى كنند، يعنى: $\lim _{t \rightarrow \infty}\left|e_{i}\right|=0 \quad(i=1, \ldots, 6)$
اثبات: تابع كانديداى لياپانوف كل سيستم برابر با V تعريف مىشود (رابطه
$V=V_{1}+V_{2}+V_{3}$
كه در آن مىتوان روابط (35-37) را نوشت:
$V_{1}=\frac{1}{2} \alpha_{4} s_{1}^{2}+\frac{1}{2 \lambda_{11}} \tilde{\alpha}_{1}^{2}+\frac{1}{2 \lambda_{12}} \tilde{\alpha}_{2}^{2}+\frac{1}{2 \lambda_{13}} \tilde{\alpha}_{3}^{2}+\frac{1}{2 \lambda_{14}} \tilde{\alpha}_{4}^{2}$
, $\lambda_{11}=\lambda_{12}=\lambda_{13}=\lambda_{31}=\lambda_{32}=\lambda_{33}=5 \quad, \quad c_{1}=c_{2}=c_{3}=0.4$地 $\lambda_{21}=\lambda_{22}=\lambda_{23}=10$ (دو شبيهسازى انجام شده است. در شبيهسازى اول كنترلر طراحى شده بر مبناى مدل بهبوديافته به مدل بهببود يافته اعمال گرديد (شكلهاى 3- الف تا 9- الف) و در شبيهسازى دوم كنترلرى بر مبناى مدل
 كنترلر دوم دقيقاٌ مشابه كنترلر اول است با اين تفاوت كه
 صفحه x-y در شكل 3 آمده و در شكل 4 سرعت زاويهاى دوران بدنه در صفحه افق نمايش داده شده است. مشاهده مىشود كه كـه كنترلر مود لغزشى به خوبى توانسته سرعت زاويهاى بدنه را به 1 rad/s 1 برساند كه اين امر باعث مىشود سيستم در صفحه افق مسير دايروى را بپيمايد. در شكل 5 سرعت خطى بدنه آورده شده است. شكلهاى 6 و 7 به تر تيب نمايشدهننده زاويه و سرعت زاويهاى انحراف بدنه از وضعيت تعادل مىباشند و به خوبى صفر ميل مى كنند. گشتاور خروجى موتور سمت راست در شكل 8 و گشتاور خروجى موتور سمت چپ مىدهند كه اگر كنترلرى بر مبناى مدل بهبوديافته طراحى شود و به مدل

 ترم ' ربات پايدار مىماند و به مقدار مطلوب مىرسد (شكل 6- ب) براحـ، اما سيستم نمى تواند مسير مطلوب را در صفحه x-y دنبال كند (شكلهاي

 وجود ترم 'm $m_{c h} h \dot{\theta} u \sin \gamma^{\prime}$ روى روى مسير حر كت سيستم تأثير بسزايى دارد و اگر اين ترم در طراحى كنترلر در نظر گرفته نشود، كنترلر عملكرد مناسبى نخواهد داشت.
$I_{k}=\int_{0}^{\infty}-\dot{s_{k}}(t) d t=s_{k}(0)-s_{k}(\infty) \quad(k=1,2,3)$
با توجه به اينكه
 همواره روابط زير برقرارند: $s_{k}(0) \geq s_{k}(t)$

$$
t \geq 0 \text { براى هر }
$$

$$
(k=1,2,3)
$$

بنابراين مىتوان رابطه (51) را نوشت:
$\ddot{V} \leq k_{1}+k_{3}+k_{5}+2 k_{2} k_{1}\left|s_{1}(0)\right|+2 k_{2} k_{2} s_{1}(0)^{2}$

$$
\begin{align*}
& +2 k_{4} \mathrm{k}_{3}\left|s_{2}(0)\right|+2 k_{4} \mathrm{k}_{4} s_{2}^{2} \\
& +2 k_{6} k_{5}\left|s_{3}(0)\right|+2 k_{6} k_{6} s_{3}(0)^{2} \tag{51}
\end{align*}
$$

مشاهده مىشود كه است. بنابراين شرايط لمم باربالت مهيا است و داريهم:
$\lim _{t \rightarrow \infty} \dot{V}(t)=0$
بنابراين اثبات لم كامل شد. با توجه به قضيه لاسال و درستى فرضهاى زير: $\dot{V} \leq 0$
$\lim _{t \rightarrow \infty} \dot{V}(t)=0$
$\lim _{t \rightarrow \infty}\left|e_{i}\right|=0 \quad(i=1, \ldots, 6)$
و در نتيجه قضيه 1 اثبات مىشود

4 - نتايج شبيه سازى
براى اعتبارسنجى قوانين كنترلى ارائه شده، شبيهسازىهايى در اين بخش $x_{0}=0 \mathrm{~m}$ ارائه شده است. در اين شبيهسازى ها شرايط اوليه برابر و $\dot{\gamma}_{0}=0 \mathrm{rad} / \mathrm{s} \quad \gamma_{0}=\frac{\pi}{4} \mathrm{rad} ، \dot{\theta}_{0}=0 \mathrm{rad} / \mathrm{s} ، \theta_{0}=0 \mathrm{rad} ، y_{0}=0 \mathrm{~m}$ ،俍 $\gamma_{d}=0 \mathrm{rad}$ سرعت زاويهاى انحراف بدنه از وضعيت تعادل برابر با صفر يعنى $\dot{\theta_{d}}=1 \mathrm{rad} / \mathrm{s}$ و مقدار مطلوب سرعت زاويهاى دورانى برابر با $\dot{\gamma}_{d}=0 \frac{\mathrm{rad}}{\mathrm{s}}$ و در نظر گرفته شده است. براى حصول به هدف كنترلى ضرايب كنترلى به $، k_{6}=0.2 ، k_{5}=0.5 ، k_{4}=5 ، k_{3}=3 ، k_{2}=0.2 ، k_{1}=0.4$ صورت

(ب)

(الف)

شكل 3 تعقيب مسير ربات در صفحه افقى x-y الف) براى مدل بهبود يافته و كنترلر بهبود يافته ب) براى مدل بهبود يافته و كنترلرى بر مبناى مدل مرسوم

شكل 4 سرعت زاويهاى بدنه در صفحه الف) براى مدل بهبود يافته و كنترلر بهبود يافته ب) براى مدل بهبود يافته و كنترلرى بر مبناى مدل مرسوم

(ب)
(الف)
شكل 6 زاويه انحراف بدنه از حالت عمود الف) براى مدل بهبود يافته و كنترلر بهبود يافته ب) براى مدل بهبود يافته و كنترلرى بر مبناى مدل مرسوم

(ب)

(الف)

شـكل 7 سرعت زاويهاى انحراف بدنه از حالت عمود الف) براى مدل بهبود يافته و كنترلر بهبود يافته ب) براى مدل بهبود يافته و كنترلرى بر مبناى مدل مرسوم

(ب)

زمان (S)
(الف)

شـكل 8 ورودى كنترلى جرخ سمت راست الف) براى مدل بهبود يافته و كنترلر بهبود يافته ب) براى مدل بهبود يافته و كنترلرى بر مبناى مدل مرسوم

(ب)

(الف)

شكل 9 ورودیى كنترلى چرخ سمت چپ الف) براى مدل بهبود يافته و كنترلر بهبود يافته ب) براى مدل بهبود يافته و كنترلرى بر مبناى مدل مرسوم آمده و اعتبارسنجى شده است. معادلات ديناميكى بدستآمده، داراى اختلافاتى نسبت به معادلات پيشين مىباشد. عمدهترين اختلاف وجود يك ترم غيرخطى است كه محققان در گذشته آن را ناديده گرفتهاند. در اين مقاله نشان داده شده است كه اگر ترم غيرخطى در طراحى كنترلر در نظر گرفته شود، تأثير بسزايى در رفتار سيستتم مدار بسته خواهد داشت. كنترلر مود لغزشى - تطبيقى به گونهاى طراحى شده است كه مىتواند بدنه ربات را در وضعيت تعادل نگاه دارد و كنترل دورانى مطلوب را نيز براى ربات برآورده

5 - نتيجه گيرى
در اين مقاله به كنترل مود لغزشى -تطبيقى ربات تعادلى دوچرخا با با استفاده از معادلات ديناميكى بهبود يافته و بر مبناى ديناميكى صفر پرداختى
 غيرخطي وابسته نمايش داد. در پزوهشى كه پیش از از اين توسط نويسنده مقاله انجام شده است، معادلات ديناميكى بهببوديافته ربات دوچرخ بدر بدس
[8] M. T. Kang, H. D. Vo, Control system design for a mobile inverted pendulum via sliding mode technique, Proceedings of International Conference on Mechatronics, Kumamoto Japan, 2007.
[9] S.C. Lin, C.C. Tsai, H.C. Huang, Adaptive robust self-balancing and steering of a two wheeled human transportation Vehicle, Journal of Intelligent \& Robotic Systems, Vol. 62, No. 1, pp.103-123, 2011.
[10] K.H. Su, Y.Y. Chen, S.F. Su, Design of neural-fuzzy-based controller for two autonomously driven wheeled robot, Neurocomputing, Vol. 73, No. 13, pp. 2478-2488, 2010.
[11]T. Ren, T. Che, Motion control for a two-wheeled vehicle using a selftuning PID controller, Control Engineering Practice, Vol. 16, No. 3, pp. 365-375, 2008
[12] A. Maddahi, A. H. Shamekhi, A. Ghaffari, A Lyapunov controller for selfbalancing two-wheeled vehicles, Robotica, Vol. 33, No. 1, 225-239, 2015.
[13] S. R. Larimi, S. A. Moosavian, Dynamic balancing of an under-actuated differential two wheeled manipulator by a reaction wheel, Modares Mechanical Engineering, Vol. 13, No. 8, pp. 79-92, 2013. (In Persian)
[14] S. R. Larimi, P. Zarafshan, S. A. Moosavian, "A new stabilization algorithm for a two-wheeled mobile robot aided by reaction wheel, Journal of Dynamic Systems, Measurement, and Control, Vol. 137, No. 1, ,011009, 2015.
[15]Y. Kim, S. H. Kim, Y. K. Kwak, Dynamic analysis of a nonholonomic twowheeled inverted pendulum robot, J. Intelligent and Robotic Systems, Vol. 44, No. 1, pp. 25-46, 2005.
[16] A. Shariati, A. Ghaffari, A. H. Shamekhi, Paths of two-wheeled selfbalancing vehicles in the horizontal plane, Second RSI/ ISM International Conference on Robotics and Mechatronics (ICRoM), pp. 456-461. IEEE, 2014.
[17]A. Shariati, A. Ghaffari, A. H. Shamekhi, Dynamical modeling of a twowheeled self-balancing vehicle using Lagrangian approach, 22th International Conference on Mechanical Engineering, ISME 2013, Tehran, 2013. (in Persian)
[18] M. Yue, X. Wei, Z. Li, Adaptive sliding-mode control for two-wheeled inverted pendulum vehicle based on zero-dynamics theory, Nonlinear Dynamics, Vol. 76, No. 1, 459-471, 2014.

سازد. در اين مقاله، كنترل سرعت روبه جلو با پروفيلى مشخص مدنظر نيست و اين مسأله در پزوهشهاى آتى مورد توجه قرار خواهد گرفت. پايدارى
 لياپانوف، لم باربالت و قضيه مجموعههاى ناوردا لاسال اثبات شده است. نتايج شبيهسازى كار آمدى كنترلر ارائه شده را نشان مىدهند. همچچنين نشان داده شد وجود ترم 'm دارد و اگر اين ترم در طراحى كنترلر در نظر گرفته نشود، كنترلر عملكرد

مناسبى نخواهد داشت.

6-مراجع
[1] F. Grasser, A. D'Arrigo, S. Colombi, A. Rufer, JOE: A mobile, inverted pendulum, IEEE Trans. Ind. Electron, Vol. 49, No. 1, pp. 107-114, 2002.
[2] L. Vermeiren, A. Dequidt, T. M. Guerra, H. Rago-Tirmant, M. Parent, Modeling, control and experimental verification on a two-wheeled vehicle with free inclination: Anurban transportation system, Control Engineering Practice, Vol. 19, No. 7, pp. 744-756, 2011.
[3] Segway Inc., Reference manual, Segway personal transporter (PT), Segway Inc, Bedford, NH, 2006.
[4] A. Salerno, J. Angeles, On the nonlinear controllability of a quasi holonomic mobile robot, Taiwan: Proc. IEEE ICRA, pp.3379-3384, 2003.
[5] K. Goher, S. Ahmad, O. M. Tokhi, A new configuration of two wheeled vehicles: towards a more workspace and motion flexibility. 4th system conference, San Diego, CA, 2010.
[6] S. Jeong, T. Takahashi, Wheeled inverted pendulum type assistant robot: inverted mobile, standing, and sitting motions. Proceedings of the 2007 IEEE/ RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, 2007.
[7] Ch. Xu, M. Li, The system design and LQR control of a two-wheels selfbalancing mobile robot, Electrical and Control Engineering (ICECE), 2011 International Conference on, pp. 2786-2789. IEEE, 2011.

